已知變量x,y滿足約束條件
x-y+2≥0
x+y-4≤0
x-2y-1≤0
,則目標函數(shù)z=2x+y的取值范圍是(  )
A、[-13,5]
B、[-13,7]
C、[0,7]
D、[5,7]
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求z的取值范圍.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點C時,直線y=-2x+z的截距最大,
此時z最大.
x-2y-1=0
x+y-4=0
,解得
x=3
y=1
,即C(3,1),
代入目標函數(shù)z=2x+y得z=2×3+1=7.
即目標函數(shù)z=2x+y的最大值為7.
當直線y=-2x+z經(jīng)過點B時,直線y=-2x+z的截距最小,
此時z最。
x-y+2=0
x-2y-1=0
,解得
x=-5
y=-3
,即B(-5,-3),
代入目標函數(shù)z=2x+y得z=2×(-5)-3=-13.
即目標函數(shù)z=2x+y的最小值為-13.
目標函數(shù)z=2x+y的取值范圍是[-13,7],
故選:B.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+ax+
a+1
x
+3(a∈R).
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)當a=1時,若關(guān)于x的不等式f(x)≥m2-5m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x+3,x≥10
f[f(x+5)],x<10
,則f(6)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的六條棱中有
 
對異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點,點P是橢圓在y軸右側(cè)上的點,且∠F1PF2=
π
2
,記線段PF1與y軸的交點為Q,O為坐標原點,若△F1OQ與四邊形OF2PQ的面積之比為1:2,則該橢圓的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的方程為
x2
9
+
y2
5
=1,F(xiàn)1,F(xiàn)2分別為C的左、右焦點,點A的坐標為(1,1),P是C上的任意一點,給出下列結(jié)論:
(1)|PF1|-|PF2|有最大值5;
(2)|PF1||PF2|有最大值9;
(3)|PF1|2+|PF2|2有最大值18;
(4)|PF1|+|PA|有最小值6-
2

其中正確結(jié)論的序號是( 。
A、(1)(2)
B、(1)(3)
C、(1)(4)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項為an=
2
n(n+2)
,則其前n項和Sn為( 。
A、1-
1
n+2
B、
3
2
-
1
n
-
1
n+1
C、
3
2
-
1
n
-
1
n+2
D、
3
2
-
1
n+1
-
1
n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-
1
x
6的展開式中的常數(shù)項是( 。
A、-10B、-20
C、10D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在從集合A到集合B的映射中,下列敘述中正確的個數(shù)是( 。
(1)A中的每一個元素在B中都有象
(2)A中的兩個不同元素在B中的象必不同
(3)B中的元素在A中可以沒有原象
(4)B中的某一元素在A中的原象可能不止一個
(5)A中元素象的集合即為B.
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案