函數(shù);
(1)若在處取極值,求的值;
(2)設直線和將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區(qū)域(不包括邊界),若圖象恰好位于其中一個區(qū)域,試判斷其所在區(qū)域并求出相應的的范圍.
(1)為極值點;(2)。
解析試題分析:(1)
經(jīng)檢驗,為極值點
(2),Ⅲ或Ⅳ,
若圖像在區(qū)域Ⅲ,則有恒成立,, ,
設,只要,,
,,故
若圖像在區(qū)域Ⅳ,則有恒成立,, ,
設,只要,
,當時,,不會成立
綜上所述
考點:本題主要考查應用導數(shù)研究函數(shù)的單調(diào)性、最值及不等式恒成立問題。
點評:典型題,本題屬于導數(shù)應用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。涉及不等式恒成立問題,利用“分離參數(shù)法”又轉(zhuǎn)化成函數(shù)的最值問題。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在處取得極值.
(1)求實數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
(3)證明:對任意的正整數(shù),不等式都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) .
(Ⅰ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅱ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設定函數(shù) (>0),且方程的兩個根分別為1,4。
(Ⅰ)當=3且曲線過原點時,求的解析式;
(Ⅱ)若在無極值點,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為偶函數(shù),曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數(shù)的取值范圍;
(2)若當時函數(shù)取得極值,確定的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設的導數(shù)為,若函數(shù)的圖像關(guān)于直對稱,且. (1)求實數(shù)的值 ;(2)求函數(shù)的極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com