【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ2﹣4ρcosθ+1=0,直線l: (t為參數(shù),0≤α<π).
(1)求曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求直線l的傾斜角及切點(diǎn)坐標(biāo).
【答案】
(1)解:∵曲線C:ρ2﹣4ρcosθ+1=0,
∴曲線C的直角坐標(biāo)方程為x2+y2﹣4x+1=0,即(x﹣2)2+y2=3,
∴曲線C是以C(2,0)為圓心,以r= 為半徑的圓,
∴曲線C的參數(shù)方程為
(2)解:∵直線l: (t為參數(shù),0≤α<π).
∴消去參數(shù)t,得直線l的直角坐標(biāo)方程為:cosαx﹣sinαy﹣4cosα=0.
∵直線l與曲線C相切,∴圓心C(2,0)到直線l的距離d等于圓半徑r,
即d= =2cosα= ,∴cos ,
∵0≤α<π,∴直線l的傾斜角α= ,
∴直線l的方程為 x﹣y﹣4 =0,
聯(lián)立 ,得x= ,y=﹣ ,
∴切點(diǎn)坐標(biāo)為( ,﹣ ).
【解析】(1)由曲線C的極坐標(biāo)方程,求出曲線C的直角坐標(biāo)方程,得到曲線C是以C(2,0)為圓心,以r= 為半徑的圓,由此能求出曲線C的參數(shù)方程.(2)直線l消去參數(shù)t,得直線l的直角坐標(biāo)方程為:cosαx﹣sinαy﹣4cosα=0.由直線l與曲線C相切,知圓心C(2,0)到直線l的距離d等于圓半徑r,由此能求出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣blnx在點(diǎn)(1,f(1))處的切線為y=1.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)是否存在實(shí)數(shù)m,當(dāng)x∈(0,1]時(shí),函數(shù)g(x)=f(x)﹣x2+m(x﹣1)的最小值為0,若存在,求出m的取值范圍;若不存在,說(shuō)明理由;
(Ⅲ)若0<x1<x2 , 求證: <2x2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為2,寬為1, , 邊分別在軸、軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合,將矩形折疊,使點(diǎn)落在線段上,設(shè)此點(diǎn)為.
(1)若折痕的斜率為-1,求折痕所在的直線的方程;
(2)若折痕所在直線的斜率為,( 為常數(shù)),試用表示點(diǎn)的坐標(biāo),并求折痕所在的直線的方程;
(3)當(dāng)時(shí),求折痕長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,直線交此拋物線于不同的兩個(gè)點(diǎn)、.
()當(dāng)直線過(guò)點(diǎn)時(shí),證明,為定值.
()當(dāng)時(shí),直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);反之,請(qǐng)說(shuō)明理由.
()記,如果直線過(guò)點(diǎn),設(shè)線段的中點(diǎn)為,線段的中點(diǎn)為.問(wèn)是否存在一條直線和一個(gè)定點(diǎn),使得點(diǎn)到它們的距離相等?若存在,求出這條直線和這個(gè)定點(diǎn);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD—A1B1C1D1中,試在DD1確定一點(diǎn)P,使得直線BD1∥平面PAC,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).
(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;
(3)設(shè)是圓上的兩個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,如果直線與軸分別交于和,問(wèn)是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文樂(lè)隊(duì)理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同軌班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
(1)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)
間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在6—8
分鐘,現(xiàn)小明.小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比
小明先正確解答完的概率;
(2)現(xiàn)從乙班成績(jī)優(yōu)秀的8名同學(xué)中任意抽取兩人,并對(duì)他們的答題情況進(jìn)行全程研究,記A.B兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)若,過(guò)原點(diǎn)作曲線的切線,求直線的方程;
(Ⅱ)若有個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com