分析 先根據(jù)基本不等式可得 $\frac{a+b}{2}$≥$\sqrt{ab}$>0,$\frac{b+c}{2}$≥$\sqrt{bc}$>0,$\frac{a+c}{2}$≥$\sqrt{ac}$>0,然后根據(jù)不等式的性質(zhì)可得 $\frac{a+b}{2}$•$\frac{b+c}{2}$•$\frac{a+c}{2}$>abc成立,兩邊同取常用對數(shù),即可證得結(jié)論.
解答 證明:∵a,b,c∈R+,
∴$\frac{a+b}{2}$≥$\sqrt{ab}$>0,$\frac{b+c}{2}$≥$\sqrt{bc}$>0,$\frac{a+c}{2}$≥$\sqrt{ac}$>0…(4分)
又上述三個等式中等號不能同時成立
∴$\frac{a+b}{2}$•$\frac{b+c}{2}$•$\frac{a+c}{2}$>abc成立.…(6分)
ln( $\frac{a+b}{2}$•$\frac{b+c}{2}$•$\frac{a+c}{2}$)>ln(abc)
∴l(xiāng)n$\frac{a+b}{2}$+ln$\frac{b+c}{2}$+ln$\frac{c+a}{2}$>lna+lnb+lnc.…(12分)
點評 本題主要考查了對數(shù)函數(shù)性質(zhì)的綜合應(yīng)用,以及基本不等式的應(yīng)用,同時考查了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | $\frac{2}{3}$π | C. | $\frac{5}{6}$π | D. | $\frac{3}{4}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 36πcm2 | B. | 27πcm2 | C. | 20πcm2 | D. | 12πcm2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com