對(duì)任意的正整數(shù)n,猜測(cè):2n-1與(n+1)2的大小.寫(xiě)出你的結(jié)論.并用數(shù)學(xué)歸納法加以證明.
【答案】分析:對(duì)n=1,2,3,4,…取值驗(yàn)證或借助于函數(shù)y=2x與y=x2的圖象,找出最小的正整數(shù)m等于6,再按照數(shù)學(xué)歸納法的步驟進(jìn)行證明.
解答:解:當(dāng)n=1時(shí)2n-1<(n+1)2
當(dāng)n=2時(shí),22-1=2<(2+1)2
當(dāng)n=3時(shí),23-1=4<(3+1)2
當(dāng)n=4時(shí)24-1<(4+1)2
當(dāng)n=5時(shí)25-1<(5+1)2
當(dāng)n=6時(shí) 26-1<(6+1)2
當(dāng)n=7時(shí) 27-1=(7+1)2
當(dāng)n=8時(shí) 28-1>8+1)2
…
猜想當(dāng)n≥8,2n-1>(n+1)2 恒成立.
數(shù)學(xué)歸納法證明:
(1)當(dāng)n=8時(shí),28-1=128,(8+1)2=81,128>81,2n-1>(n+1)2 成立
(2)假設(shè)當(dāng)n=k(k≥8)時(shí)不等式成立,即有2k-1>(k+1)2
則當(dāng)n=k+1時(shí),2(k+1)-1=2k=2•2k-1>2•(k+1)2=k2+[(k+2)2-2]>(k+2)2 (∵k2-2>0)
=[(k+1)+1]2,即是說(shuō) 當(dāng)n=k+1時(shí)不等式也成立.
由(1)(2)可知當(dāng)n≥8,時(shí)2n-1>(n+1)2 恒成立.
點(diǎn)評(píng):本題考查猜想、證明的推理方法,考查數(shù)學(xué)歸納法證明命題.注意證明的步驟的應(yīng)用.