【題目】下面程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )
A. 0 B. 2 C. 4 D. 14
【答案】B
【解析】由a=14,b=18,a<b,
則b變?yōu)?/span>18﹣14=4,
由a>b,則a變?yōu)?/span>14﹣4=10,
由a>b,則a變?yōu)?/span>10﹣4=6,
由a>b,則a變?yōu)?/span>6﹣4=2,
由a<b,則b變?yōu)?/span>4﹣2=2,
由a=b=2,
則輸出的a=2.
故選B.
點睛:算法與流程圖的考查,側重于對流程圖循環(huán)結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環(huán)結構、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(Ⅰ)求證:AC⊥FB
(Ⅱ)求二面角E﹣FB﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m∈R,復數(shù)z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i為虛數(shù)單位.
(1)當m為何值時,復數(shù)z是虛數(shù)?
(2)當m為何值時,復數(shù)z是純虛數(shù)?
(3)當m為何值時,復數(shù)z所對應的點在復平面內位于第四象限?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{bn}滿足bn=3bn﹣1+2(n≥2),b1=1.數(shù)列{an}的前n項和為Sn , 滿足Sn=4an+2
(1)求證:{bn+1}是等比數(shù)列并求出數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的通項公式和前n項和公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,地面上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓。
(1)若圓形標志物半徑為25m,以PG所在直線為x軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標志的最大視角(即∠APF)的正切值為 ,求該圓形標志物的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=r2(r>0),點P為圓O上任意一點(不在坐標軸上),過點P作傾斜角互補的兩條直線分別交圓O于另一點A,B.
(1)當直線PA的斜率為2時,
①若點A的坐標為(﹣ ,﹣ ),求點P的坐標;
②若點P的橫坐標為2,且PA=2PB,求r的值;
(2)當點P在圓O上移動時,求證:直線OP與AB的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 是的中點,底面為矩形, , , ,且平面平面,平面與棱交于點,平面與平面交于直線.
(1)求證: ;
(2)求與平面所成角的正弦值為,求的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足記數(shù)列的前項和為,
(1)求證:數(shù)列為等比數(shù)列,并求其通項;
(2)求;
(3)問是否存在正整數(shù),使得成立?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C對邊分別為a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,則△ABC的面積為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com