【題目】樹立和踐行綠水青山就是金山銀山,堅持人與自然和諧共生的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,大量的統(tǒng)計數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機選出人,并將這人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示:

1)求的值;

2)求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);

3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取人,再從這人中隨機抽取人進行問卷調(diào)查,求第2組中抽到人的概率.

【答案】1;(241.5歲;(3

【解析】

1)由頻率分布直方圖即能求出

2)由頻率分布直方圖即能求出平均數(shù)和中位數(shù);

3)第1,2,3組的人數(shù)分別為20人,30人,從第1,2組中用分層抽樣的方法抽取5人,則第1,2組抽取的人數(shù)分別為2人,3人,再利用列舉法即可求出.

1)由,得

2)平均數(shù)為;歲;

3)第1,23組的人數(shù)分別為20人,30人,從第1,2組中用分層抽樣的方法抽取5人,

則第1,2組抽取的人數(shù)分別為2人,3人,分別記為

設(shè)從5人中隨機抽取3人,為,

10個基本事件,

從而第2組中抽到2人的概率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中, ,平面經(jīng)過,直線,則平面截該正方體所得截面的面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于兩點.

(1)求圓心的極坐標;

(2)直線軸的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】單位圓的內(nèi)接正n(n≥3)邊形的面積記為,則f(3)=_____; 下面是關(guān)于的描述:

其中正確結(jié)論的序號為__________.(注:請寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形,,平面,為的中點.

(Ⅰ) 求證: 平面

(Ⅱ) 求證:

(Ⅲ)若為線段上的點,當三棱錐的體積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為, ,離心率為,且過點

)求橢圓的標準方程.

、是橢圓上的四個不同的點,兩條都不和軸垂直的直線分別過點 ,且這條直線互相垂直,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,則當時,討論的單調(diào)性;

(2)若,且當時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某數(shù)學小組從醫(yī)院和氣象局獲得20181月至6月份每月20的晝夜溫差(℃,)和患感冒人數(shù)(/人)的數(shù)據(jù),畫出如圖的折線圖.

1)建立關(guān)于的回歸方程(精確到0.01),預(yù)測20191月至6月份晝夜溫差為41時患感冒的人數(shù)(精確到整數(shù));

2)求的相關(guān)系數(shù),并說明的相關(guān)性的強弱(若,則認為具有較強的相關(guān)性).

參考數(shù)據(jù):,,.

參考公式:

相關(guān)系數(shù)

回歸直線方程,.

查看答案和解析>>

同步練習冊答案