19.已知a1=3,a2=6且an+2=an+1-an,則a3為(  )
A.3B.-3C.6D.-6

分析 由遞推公式得a3=a2-a1,由此能求出結(jié)果.

解答 解:∵a1=3,a2=6,且an+2=an+1-an,
∴a3=a2-a1=6-3=3.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列的第3項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意數(shù)列的遞推公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A,B是單位圓上的兩點(diǎn),O為圓心,且∠AOB=120°,MN是圓O的一條直徑,點(diǎn)C在圓內(nèi),且滿足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),則$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值為( 。
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,-1≤x<0\\{log_2}(x+1),0≤x<3.\end{array}$對(duì)任意的x∈R都有f(x+2)=f(x-2).若在區(qū)間[-5,3]上函數(shù)g(x)=f(x)-mx+m恰好有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$(-\frac{1}{2},-\frac{1}{6})$B.$[-\frac{1}{2},-\frac{1}{6})$C.$(-\frac{1}{2},-\frac{1}{3})$D.$[-\frac{1}{2},-\frac{1}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知(x+$\frac{1}{2}$)n的展開式中前三項(xiàng)的系數(shù)成等差數(shù)列,設(shè)(x+$\frac{1}{2}$)n=a0+a1x+a2x2+…+anxn,求:
(1)a0-a1+a2-a3+…+(-1)nan的值;
(2)ai(i=0,1,2,…,n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax-$\frac{1}{2}$x2-aln(x+1)(a>0),g(x)=ex-x-1,曲線y=f(x)與y=g(x)在原點(diǎn)處的公共的切線.
(1)若x=0為函數(shù)f(x)的極大值點(diǎn),求f(x)的單調(diào)區(qū)間(用a表示);
(2)若?x≥0,g(x)≥f(x)+$\frac{1}{2}$x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題:
(1)夾在兩平行平面間的兩個(gè)幾何體,被一個(gè)平行于這兩個(gè)平面的平面所截,若截得兩個(gè)截面的面積總相等,則這兩個(gè)幾何體的體積出相等;
(2)直棱柱和圓柱側(cè)面展開圖都是矩形;
(3)斜棱柱的體積等于與它的一條側(cè)棱垂直的截面面積乘以它的一條側(cè)棱;
(4)平行六面體的對(duì)角線交于一點(diǎn),且互相平分;
其中正確的個(gè)數(shù)是( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)由bn=$\frac{S_n}{n+c}$(c≠0)構(gòu)成的新數(shù)列為bn,求證:當(dāng)且僅當(dāng)c=-$\frac{1}{2}$時(shí),數(shù)列bn是等差數(shù)列;
(3)對(duì)于(2)中的等差數(shù)列bn,設(shè)cn=$\frac{8}{{({a_n}+7)•{b_n}}}$(n∈N*),數(shù)列{cn}的前n項(xiàng)和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-$\frac{8}{_{n}}$)•0.9n(n∈N*),是否存在整數(shù)M,使f(n)<M對(duì)一切n∈N*都成立?若存在,求出M的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一房產(chǎn)商競標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ=$\frac{π}{3}$,半徑為R=200m,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請(qǐng)你通過計(jì)算,為房產(chǎn)商提供決策建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),點(diǎn)M(a,b),∠MF1F2=30°,則雙曲線的離心率為( 。
A.4B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案