20.已知角α的終點經(jīng)過點(-$\sqrt{3}$,1),則sinα的值為$\frac{1}{2}$.

分析 由角α的終邊經(jīng)過點P(-$\sqrt{3}$,1),利用任意角的三角函數(shù)定義求出sinα即可.

解答 解:∵角α的終點經(jīng)過點P(-$\sqrt{3}$,1),
∴x=-$\sqrt{3}$,y=1,|OP|=2,
因此,sinα=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 此題考查了任意角的三角函數(shù)定義,熟練掌握三角函數(shù)的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=tan($\frac{π}{2}$x+$\frac{π}{3}$)
(1)求f(x)的最小正周期.
(2)求f(x)的定義域和單調(diào)區(qū)間.
(3)求方程f(x)=$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在程序框圖中,圖形符號“□”可用于( 。
A.輸出B.賦值C.判斷D.結(jié)束算法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某個自然數(shù)有關(guān)的命題,如果當(dāng)n=k+1(n∈N*)時,該命題不成立,那么可推得n=k時,該命題不成立.現(xiàn)已知當(dāng)n=2012時,該命題成立,那么,可推得( 。
A.n=2011時,該命題成立B.n=2013時,該命題成立
C.n=2011時,該命題不成立D.n=2013時,該命題不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知x3+y3=27,x2-xy+y2=9,求x+y與x2+y2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(1)求tan2α的值;
(2)求cos(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知cos(α+$\frac{π}{4}$)=$\frac{2}{3}$,則sin(α-$\frac{5π}{4}$)的值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,設(shè)計一個正四棱錐形冷水塔,高是3米,底面的邊長是8米:
(1)求這個正四棱錐形冷水塔的容積(冷水塔的厚度忽略不計);
(2)制造這個冷水塔的側(cè)面需要多少平方米的鋼板?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線l:y=$\sqrt{3}$x+2與圓O:x2+y2=4交于A、B兩點,分別過A、B兩點作圓O的切線,這兩條切線相交于C點,將向量$\overrightarrow{OC}$繞原點O逆時針旋轉(zhuǎn)角度θ后,得到向量$\overrightarrow{OD}$,當(dāng)θ變化時,$\overrightarrow{AD}$•$\overrightarrow{BD}$的最大值是( 。
A.18B.22C.12D.24

查看答案和解析>>

同步練習(xí)冊答案