18.命題“?x≥0,使x(x+3)≥0”的否定是?x≥0,x(x+3)<0.

分析 根據(jù)命題“?x≥0,使x(x+3)≥0”是特稱(chēng)命題,其否定為全稱(chēng)命題,即?x≥0,使x(x+3)<0,從而得到答案.

解答 解:∵命題“?x≥0,使x(x+3)≥0”是特稱(chēng)命題
∴否定命題為?x≥0,x(x+3)<0,
故答案為:?x≥0,x(x+3)<0

點(diǎn)評(píng) 這類(lèi)問(wèn)題的常見(jiàn)錯(cuò)誤是沒(méi)有把全稱(chēng)量詞改為存在量詞,或者對(duì)于“>”的否定用“<”了.這里就有注意量詞的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特稱(chēng)命題的否定是全稱(chēng)命題,“存在”對(duì)應(yīng)“任意”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值為4,最小值為2,且f(x0)=2,則f(x0+$\frac{π}{4}$)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)a,b為實(shí)數(shù),則“ab>1”是“b>$\frac{1}{a}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$,則$\frac{y}{x}$的最大值是(  )
A.-2B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知A={x|y=ln(1-x)},B={x|log2x<1},則A∩B=( 。
A.(-∞,1)B.(0,2)C.(0,1)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,雙曲線M:$\frac{{x}^{2}}{m}$-y2=1與圓N:x2+(y-m)2=1相切,A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),若圓N上存在一點(diǎn)P滿(mǎn)足|PA|-|PB|=2$\sqrt{m}$,則點(diǎn)P到x軸的距離為( 。
A.m3B.m2C.mD.$\frac{1}{m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,既是奇函數(shù),又在(0,1)上單調(diào)遞增的為(  )
A.y=x3+1B.y=ln|x|C.y=x+$\frac{1}{x}$D.y=x+sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知{an}是首項(xiàng)為$\frac{1}{2}$的等差數(shù)列,Sn為數(shù)列的前n項(xiàng)和,若S6=2S4,則a7=( 。
A.$\frac{1}{3}$B.$\frac{19}{2}$C.-$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如果θ=7rad,那么角θ所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案