分別寫出下列命題的逆命題、逆否命題,并判斷它們的真假:
(1)若q<1,則方程x2+2x+q=0有實(shí)根;
(2)若x2+y2=0,則x,y全為零.
(1)見解析(2)見解析)
解析試題分析:逆命題是交換原命題條件和結(jié)論,逆否命題是交換原命題條件和結(jié)論并否定. (Ⅰ)逆命題:若方程x2+2x+q=0有實(shí)根,則q<1。為假命題.逆否命題:若方程x2+2x+q=0無實(shí)根,則q≥1,為真命題.(Ⅱ)逆命題:若x、y全為零,則x2+y2=0,為真命題.逆否命題:若x、y不全為零,則x2+y2≠0,為真命題.
試題解析:(Ⅰ)逆命題:若方程x2+2x+q=0有實(shí)根,則q<1。為假命題.
逆否命題:若方程x2+2x+q=0無實(shí)根,則q≥1,為真命題.
(Ⅱ)逆命題:若x、y全為零,則x2+y2=0,為真命題.
逆否命題:若x、y不全為零,則x2+y2≠0,為真命題.
考點(diǎn):四種命題之間的關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
有下列敘述
①集合
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對任意正整數(shù)恒成立,則實(shí)數(shù)的取值范圍是
④對于任意兩個(gè)正整數(shù),,定義某種運(yùn)算如下:
當(dāng),奇偶性相同時(shí), =;當(dāng),奇偶性不同時(shí),=,在此定義下,集合.
上述說法正確的是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/90/9/z5k9e1.png" style="vertical-align:middle;" />,若存在非零實(shí)數(shù)使得對于任意,有,且,則稱為上的“高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)為上的“1高調(diào)函數(shù)”;
②函數(shù)為上的“高調(diào)函數(shù)”;
③如果定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/a/tvzi4.png" style="vertical-align:middle;" />的函數(shù)為上“高調(diào)函數(shù)”,那么實(shí)數(shù)的取值范圍是;
其中正確的命題是 .(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題p:“任意的x∈[1,2],x2-a≥0”;
命題q:“存在x0∈R,x02+2ax0+2-a=0”,若命題“p且q”是真命題.
求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.命題p: 直線l1:與拋物線C有公共點(diǎn).命題q: 直線l2:被拋物線C所截得的線段長大于2.若為假, 為真,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題:實(shí)數(shù)滿足,其中;命題:實(shí)數(shù)滿足且的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè):,:關(guān)于的不等式的解集是空集,試確定實(shí)數(shù)的取值范圍,使得或為真命題,且為假命題。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則;
②若銳角、滿足 則;
③在中,“”是“”成立的充要條件;
④要得到函數(shù)的圖象,只需將的圖象向右平移個(gè)單位。
其中是真命題的有 (填寫正確命題題號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com