11.已知函數(shù)f(x)=sin(x+$\frac{7π}{4}$)+cos(x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最小值;
(2)已知f(α)=$\frac{6}{5}$,0<α<$\frac{3π}{4}$,求f(2α)的值.

分析 (1)先利用兩角和余差的基本公式或誘導(dǎo)公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,結(jié)合三角函數(shù)的圖象和性質(zhì)f(x)的最小值.
(2)根據(jù)f(α)=$\frac{6}{5}$,0<α<$\frac{3π}{4}$,求解α,利用二倍角公式化簡(jiǎn)f(2α),可得f(2α)的值.

解答 解 (1)∵函數(shù)f(x)=sin(x+$\frac{7π}{4}$)+cos(x-$\frac{3π}{4}$),x∈R
化簡(jiǎn)可得:f9x)=sin(2π-$\frac{π}{4}$+x)+cos($-\frac{π}{2}$-$\frac{π}{4}$+x),
=sin(x-$\frac{π}{4}$)+sin(x-$\frac{π}{4}$)
=2sin(x-$\frac{π}{4}$)
函數(shù)的最小正周期T=$\frac{2π}{ω}=\frac{2π}{1}$=2π,
∵sin(x-$\frac{π}{4}$)的最小值為-1,
∴f(x)的最小值為-2.
(2)由及(1)知f(x)=2sin(x-$\frac{π}{4}$)
f(α)=$\frac{6}{5}$,
∴$sin(α-\frac{π}{4})=\frac{3}{5}$,
由$0<α<\frac{3π}{4}$,知$-\frac{π}{4}<α-\frac{π}{4}<\frac{π}{2}$,
∴$cos(α-\frac{π}{4})=\frac{3}{5}$
∴$f(2α)=2sin(2α-\frac{π}{4})=2sin[2(α-\frac{π}{4})+\frac{π}{4}]$=$\sqrt{2}[sin2(α-\frac{π}{4})+cos2(α-\frac{π}{4})]$=$\sqrt{2}[2sin(α-\frac{π}{4})cos(α-\frac{π}{4})+2{cos^2}(α-\frac{π}{4})-1]$=$\sqrt{2}(2×\frac{3}{5}×\frac{4}{5}+2×\frac{16}{25}-1)=\frac{{31\sqrt{2}}}{25}$.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.同時(shí)考察了二倍角公式的化簡(jiǎn)和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an},其前n項(xiàng)和為Sn
(1)若{an}是公差為d(d>0)的等差數(shù)列,且{$\sqrt{{S}_{n}+n}$}也為公差為d的等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}對(duì)任意m,n∈N*,且m≠n,都有$\frac{2{S}_{m+n}}{m+n}$=am+an+$\frac{{a}_{m}-{a}_{n}}{m-n}$,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+sin(2x-$\frac{π}{6}$)+cos2x+a.(其中a∈R,a為常數(shù)).
(1)求函數(shù)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)若x∈[0,$\frac{π}{2}$]時(shí),f(x)的最小值為-3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=x2+x-lnx+1在其定義域的一個(gè)子區(qū)間(2k-1,k+2)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A.(-$\frac{3}{2}$,$\frac{3}{4}$)B.[$\frac{1}{2}$,3)C.(-$\frac{3}{2}$,3)D.[$\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若直線2x+y+a=0過(guò)圓x2+y2+2x-6y+5=0的圓心,則a的值為(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x<0,求$y=\frac{{1+{x^2}}}{x}$的最大值=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線x-y=1截圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ∈R)所得弦長(zhǎng)為(  )
A.$\sqrt{14}$B.$\sqrt{15}$C.4D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=x3+x2+mx+1在R上既有極大值也有極小值,則實(shí)數(shù)m的取值范圍是( 。
A.($\frac{1}{3}$,+∞)B.(-∞,$\frac{1}{3}$)C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在公差不為0的等差數(shù)列{an}中,a2、a4、a8成公比為a2的等比數(shù)列,又?jǐn)?shù)列{bn}滿足bn=$\left\{\begin{array}{l}{{2}^{{a}_{n}},n=2k-1,k∈N*}\\{2{a}_{n},n=2k,k∈N*}\end{array}\right.$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和為Tn
(3)令cn=$\frac{_{2n-1}}{_{2n}}$(n∈N*),求使得cn>10成立的n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案