C
分析:由實數(shù)x,y滿足x+y=4,我們易將y用x表示,則x2+y2可表示為一個關(guān)于x的二次函數(shù),結(jié)合二次函數(shù)在定區(qū)間上最值的求法,不難得到結(jié)果.
解答:因為x+y=4,
所以y=4-x,
所以x2+y2=x2+(4-x)2=2(x-2)2+8
當x=2時,有最小值8.
故選C.
點評:(1)解二次函數(shù)求最值問題,首先采用配方法,將二次函數(shù)化為y=a(x-m)2+n的形式,得頂點(m,n)或?qū)ΨQ軸方程x=m,可分成三個類型:①頂點固定,區(qū)間固定;②頂點含參數(shù),區(qū)間固定;③頂點固定,區(qū)間變動.(2)二次函數(shù)的最值問題能夠?qū)⒂嘘P(guān)二次函數(shù)的全部知識和性質(zhì)融合在一起,還經(jīng)常和實際問題以及其他考點的知識相結(jié)合考查考生的函數(shù)思想水平和數(shù)學抽象能力,所以歷來為高考命題專家所青睞.解決最值問題的關(guān)鍵是與圖象結(jié)合,就是用數(shù)形結(jié)合的方法和運動變化的觀點進行分析,然后用抽象的數(shù)學表達式反映考題的本質(zhì).當然這離不開有關(guān)函數(shù)最值的基本知識,如最值公式、均值定理、配方法等.