【題目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),設(shè)函數(shù)f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.

【答案】
(1)解:∵ =(2cosx, sinx), =(3cosx,﹣2cosx),

∴f(x)= =(2cosx, sinx)(3cosx,﹣2cosx)=

=6× =

=

函數(shù)f(x)的最小正周期為T(mén)=


(2)解:∵x∈[0, ],∴2x﹣ ∈[﹣ ],

則sin(2x﹣ )∈[﹣ ].

∴f(x)的值域?yàn)閇 ,6]


【解析】由已知向量的坐標(biāo)結(jié)合數(shù)量積可得f(x)的解析式,再由輔助角公式化簡(jiǎn).(1)直接利用周期公式求得f(x)的最小正周期;(2)由x的范圍結(jié)合三角函數(shù)的單調(diào)性求得求f(x)的值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知0<a<1,f(x)=ax , g(x)=logax,h(x)= ,當(dāng)x>1時(shí),則有(
A.f(x)<g(x)<h(x)
B.g(x)<f(x)<h(x)
C.g(x)<h(x)<f(x)
D.h(x)<g(x)<f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=lnx+ax2﹣(a+2)x在 處取得極大值,則正數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中是自然常數(shù),

(1)當(dāng)時(shí),求的單調(diào)性和極值;

(2)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為
(1)計(jì)算f(1),f(2),f(3)的值;
(2)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 (a>b>0)的右焦點(diǎn)F(1,0),離心率為 ,過(guò)F作兩條互相垂直的弦AB,CD,設(shè)AB,CD的中點(diǎn)分別為M,N.

(1)求橢圓的方程;
(2)證明:直線MN必過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(3)若弦AB,CD的斜率均存在,求△FMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有100名工人接受了生產(chǎn)1000臺(tái)某產(chǎn)品的總?cè)蝿?wù),每臺(tái)產(chǎn)品由9個(gè)甲型裝置和3個(gè)乙型裝置配套組成,每個(gè)工人每小時(shí)能加工完成1個(gè)甲型裝置或3個(gè)乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時(shí)間為t1小時(shí),其余工人加工完乙型裝置所需時(shí)間為t2小時(shí).

設(shè)f(x)=t1t2

(Ⅰ)求f(x)的解析式,并寫(xiě)出其定義域;

(Ⅱ)當(dāng)x等于多少時(shí),f(x)取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,sinA=sinBsinC,則tanB+2tanC的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案