【題目】在直角梯形PBCD中, ,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。
(1)求證: 平面ABCD;
(2)求二面角E—AC—D的正切值.
【答案】(1)在圖中,由題意可知為正方形,所以在圖中, ,
四邊形ABCD是邊長為2的正方形,
因為,ABBC,
所以BC平面SAB,
又平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,
(2)
【解析】試題分析:(1)證明:在圖中,由題意可知,
為正方形,所以在圖中, ,
四邊形ABCD是邊長為2的正方形,
因為,ABBC,
所以BC平面SAB,
又平面SAB,所以BCSA,又SAAB,
所以SA平面ABCD,
(2)在AD上取一點O,使,連接EO。
因為,所以EO//SA
所以EO平面ABCD,過O作OHAC交AC于H,連接EH,
則AC平面EOH,所以ACEH。
所以為二面角E—AC—D的平面角,
在中, …11分
,即二面角E—AC—D的正切值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(,),且兩個焦點,的坐標(biāo)依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是橢圓上的兩個動點,為坐標(biāo)原點,直線的斜率為,直線的斜率為,求當(dāng)為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個口袋有m個白球,n個黑球(m,n∈N* , n≥2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個取出,并放入如圖所示的編號為1,2,3,…,m+n的抽屜內(nèi),其中第k次取出的球放入編號為k的抽屜(k=1,2,3,…,m+n).
1 | 2 | 3 | … | m+n |
(Ⅰ)試求編號為2的抽屜內(nèi)放的是黑球的概率p;
(Ⅱ)隨機(jī)變量x表示最后一個取出的黑球所在抽屜編號的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的前n項和為Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項公式;
(Ⅱ)若T3=21,求S3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 和 兩個空白框中,可以分別填入( 。
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com