設(shè)F1、F2分別是橢圓
x2
25
+
y2
16
=1(a>b>0)的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|+|PF1|的最大值為( 。
分析:求出焦點(diǎn)F1、F2的坐標(biāo),根據(jù)橢圓的定義得|PM|+|PF1|=10+(|PM|-|PF2|),運(yùn)動(dòng)點(diǎn)P可得當(dāng)P在MF2的延長線上時(shí)等號(hào)成立,可得P與圖中的P0點(diǎn)重合時(shí)|PM|-|PF2|的最大值為5,由此即可得到|PM|+|PF1|的最大值.
解答:解:∵橢圓
x2
25
+
y2
16
=1中,a=5,b=4
∴c=
a2-b2
=3,得焦點(diǎn)為F1(-3,0),F(xiàn)2(3,0).
根據(jù)橢圓的定義,得
|PM|+|PF1|=|PM|+(2a-|PF2|)=10+(|PM|-|PF2|)
∵|PM|-|PF2|≤|MF2|,當(dāng)且僅當(dāng)P在MF2的延長線上時(shí)等號(hào)成立
∴點(diǎn)P與圖中的P0點(diǎn)重合時(shí),(|PM|-|PF2|)max=
(6-3)2+(4-0)2
=5
此時(shí)|PM|+|PF1|的最大值為10+5=15.
故選:A
點(diǎn)評(píng):本題給出橢圓上的動(dòng)點(diǎn)P,求距離之和的最大值,著重考查了橢圓的定義與標(biāo)準(zhǔn)方程、兩點(diǎn)間的距離公式等知識(shí),考查了對(duì)平面幾何中距離最值的理解,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),若在直線x=
a2
c
上存在點(diǎn)P,使線段PF1的中垂線過點(diǎn)F2,則橢圓的離心率的取值范圍是
3
3
,1)
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),若橢圓C上的一點(diǎn)A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個(gè)不同的點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)P,求證:|
OP
|<
1
2
;
(3)若M,N是橢圓C上兩個(gè)不同的點(diǎn),Q是橢圓C上不同于M,N的任意一點(diǎn),若直線QM,QN的斜率分別為KQM•KQN.問:“點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱”是KQM•KQN=-
3
4
的什么條件?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),其右焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)是否存在過點(diǎn)A(5,0)的直線l與橢圓交于不同的兩點(diǎn)C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點(diǎn)在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點(diǎn),P為橢圓E上第一象限內(nèi)的點(diǎn),直線F2P交y軸于點(diǎn)Q,并且F1P⊥F1Q,證明:當(dāng)a變化時(shí),點(diǎn)P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),其右焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)A(5,0),求線段AP中點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案