【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間是(
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)

【答案】A
【解析】解:∵f(x)=x3+bx2+cx+d,∴f′(x)=3x2+2bx+c,∴

由圖可知f′(﹣2)=f(3)=0,∴解得

∵y=log2(x2+ bx+ )═log2(x2﹣x﹣6),令g(x)=x2﹣x﹣6=(x+2)(x﹣3).

本題即求當(dāng)g(x)>0時(shí),g(x)的減區(qū)間.

由二次函數(shù)的性質(zhì)可得當(dāng)g(x)>0時(shí),g(x)的減區(qū)間為(﹣∞,﹣2),

故選:A.

【考點(diǎn)精析】利用復(fù)合函數(shù)單調(diào)性的判斷方法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如表
表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,以此類推,例如6613用算籌表示就是: ,則9117用算籌可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是奇函數(shù).

1求常數(shù)的值;

2,試判斷函數(shù)的單調(diào)性,并加以證明;

3,且函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過(guò)4噸時(shí),每噸為1.80元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸3.00元.某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩用戶該月用水量分別為5x,3x噸. (Ⅰ) 若x=1,求該月甲、乙兩戶的水費(fèi);
(Ⅱ) 求y關(guān)于x的函數(shù);
(Ⅲ) 若甲、乙兩戶該月共交水費(fèi)26.4元,分別求出甲、乙兩戶該月的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò), 兩點(diǎn),且圓心在直線上.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過(guò)圓內(nèi)一點(diǎn)作兩條相互垂直的弦,當(dāng)時(shí),求四邊形的面積.

(3)設(shè)直線與圓相交于兩點(diǎn), ,且的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱ABCA1B1C1中,AB2,AA13,

DC1B的中點(diǎn),PAB邊上的動(dòng)點(diǎn).

(1)當(dāng)點(diǎn)PAB的中點(diǎn)時(shí),證明DP∥平面ACC1A1

(2)若AP=3PB,求三棱錐BCDP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某火鍋店為了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:

x

2

8

9

11

5

y

12

8

8

7

10


(1)求y關(guān)于x的回歸方程 ;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額. (附:回歸方程 中, = = , = .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)復(fù)數(shù)z=2m+4-m2i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):

1位于虛軸上?

2位于一、三象限?

3位于以原點(diǎn)為圓心,以4為半徑的圓上?

查看答案和解析>>

同步練習(xí)冊(cè)答案