【題目】已知函數(shù)為奇函數(shù),且,其中,.

(1)求的值.

(2)若,,求的值.

【答案】(1);(2).

【解析】

試題(1)先根據(jù)奇函數(shù)性質(zhì)得y2=cos(2xθ)為奇函數(shù),解得θ ,再根據(jù)解得a(2)根據(jù)條件化簡得sinα,根據(jù)同角三角函數(shù)關系得cosα,最后根據(jù)兩角和正弦公式求sin的值

試題解析:(1)因為f(x)=(a+2cos2x)cos(2xθ)是奇函數(shù),而y1a+2cos2x為偶函數(shù),所以y2=cos(2xθ)為奇函數(shù),由θ∈(0,π),得θ,所以f(x)=-sin 2x·(a+2cos2x),

f=0得-(a+1)=0,即a=-1.

(2)由(1)得f(x)=-sin 4x,因為f=-sin α=-

即sin α,又α,從而cos α=-,

所以sin=sin αcos+cos αsin××.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是四面體上的點,且,,,,則下列說法錯誤的是( )

A. 平面 B. 平面

C. 直線相交于同一點 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F(xiàn)為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為。

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當點P在橢圓上運動時,求證:以BD為直徑的圓與直線PF恒相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從你所在班級任意選出6名同學,調(diào)查他們的出生月份,假設出生在一月,二月……十二月是等可能的.設事件至少有兩人出生月份相同,設計一種試驗方法,模擬20次,估計事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)記,求的最小值;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒子中僅有4個白球和5個黑球,從中任意取出一個球.

1取出的球是黃球是什么事件?它的概率是多少?

2取出的球是白球是什么事件?它的概率是多少?

3取出的球是白球或黑球是什么事件?它的概率是多少?

4)設計一個用計算器或計算機模擬上面取球的試驗,并模擬100次,估計取出的球是白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫出下列命題的否定,并判斷所得命題的真假:

1;

2)有的三角形是等邊三角形;

3)有一個偶數(shù)是素數(shù)

4)任意兩個等邊三角形都相似;

5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓C過定點F20),且與直線x=-2相切,圓心C的軌跡為E,

1)求圓心C的軌跡E的方程;

2)若直線lEP,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(Ⅰ)視分布在各區(qū)間內(nèi)的頻率為相應的概率,求;

Ⅱ)將表示為的函數(shù),求出該函數(shù)表達式;

Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如,則取的概率等于市場需求量落入的頻率),的分布列及數(shù)學期望

查看答案和解析>>

同步練習冊答案