設(shè)橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)
的上焦點是F1,過點P(3,4)和F1作直線PF1交橢圓于A、B兩點,已知A(
1
3
,
4
3
).
(1)求橢圓E的方程;
(2)設(shè)點C是橢圓E上到直線PF1距離最遠(yuǎn)的點,求C點的坐標(biāo).
(1)由A(
1
3
4
3
)和P(3,4)得直線PF1的方程為:y=x+1…(1分)
令x=0,得y=1,即c=1                                          …(2分)
橢圓E的焦點為F1(0,1)、F2(0,-1),
由橢圓的定義可知2a=|AF1|+|AF2|=
(
1
3
)
2
+(
4
3
-1)
2
+
(
1
3
)
2
+(
4
3
+1)
2
=2
2
…(4分)
a=
2
,b=1
…(5分)
橢圓E的方程為
y2
2
+x2=1
…(6分)
(2)設(shè)與直線PF1平行的直線l:y=x+m…(7分),
y2
2
+x2=1
y=x+m
,消去y得3x2+2mx+m2-2=0…(8分)
△=(2m)2-4×3×(m2-2)=0,
m2=3,m=±
3
…(9分)
要使點C到直線PF1的距離最遠(yuǎn),
則直線L要在直線PF1的下方,所以m=-
3
…(10分)
此時直線l與橢圓E的切點坐標(biāo)為(
3
3
,-
2
3
3
)
,
故C(
3
3
,-
2
3
3
)
為所求.   …(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>0,F(xiàn)是方程
x2
b2
+
y2
a2
=1
的橢圓E的一個焦點,P、A,B是橢圓E上的點,
PF
與x軸平行,
PF
=
a
4
,設(shè)
A(x1,y1),B(x2,y2),
m
=(
x1
b
y1
a
)
,
n
=(
x2
b
,
y2
a
)
,
m
n
=0

(I )求橢圓E的離心率
(II)如果橢圓E上的點與橢圓E的長軸的兩個端點構(gòu)成的三角形的面積的最大值等于2,直線y=kx-3經(jīng)過A、B兩點,求k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>0F是方程
x2
b2
+
y2
a2
=1
的橢圓E的一個焦點,P、A,B是橢圓E上的點,
PF
與x軸平行,
PF
=
a
4
,設(shè)A(x1,y1),B(x2,y2),
i
=(
x1
b
,
y1
a
)
n
=(
x2
b
,
y2
a
)
i
n
原點O與A、B兩點構(gòu)成的△AOB的面積為S
(I )求橢圓E的離心率
(II)設(shè)橢圓E上的點與橢圓£的長軸的兩個端點構(gòu)成的三角形的面積的最大值等于2,S是否為定值?如果是,求出這個定值:如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)經(jīng)過點P(1,
2
)
,其離心率e=
2
2

(Ⅰ)求橢圓M的方程;
(Ⅱ) 直線l:y=
2
x+m
交橢圓于A、B兩點,且△PAB的面積為
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺二模)設(shè)橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)
的上焦點是F1,過點P(3,4)和F1作直線PF1交橢圓于A、B兩點,已知A(
1
3
,
4
3
).
(1)求橢圓E的方程;
(2)設(shè)點C是橢圓E上到直線PF1距離最遠(yuǎn)的點,求C點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案