【題目】如圖,已知平面平面,B為線段的中點(diǎn),,四邊形為正方形,平面平面,,,M為棱的中點(diǎn).
(1)若N為線段上的點(diǎn),且直線平面,試確定點(diǎn)N的位置;
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(1)N為的中點(diǎn);(2).
【解析】
(1)根據(jù)線面平行的性質(zhì),得到線線平行,在同一個平面中,根據(jù)相似三角形,即可得到點(diǎn)的位置;
(2)以為坐標(biāo)原點(diǎn),以為軸建立空間直角坐標(biāo)系,求出兩個平面的法向量,根據(jù)向量夾角的計算公式,即可求得結(jié)果.
(1)連接,∵直線平面,平面,
平面平面,
又M為的中點(diǎn),為的中位線,
∴N為的中點(diǎn);
(2)設(shè),則,,
又∵B為的中點(diǎn),.
,
又平面平面,平面平面
∴四邊形為平行四邊形.
又,∴四邊形為菱形.
又,,
,,
,
,平面平面
平面,,
,,兩兩互相垂直
∴以A為坐標(biāo)原點(diǎn),
分別以,,所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系
如下圖所示:
依題意,得,,,
設(shè)平面的一個法向量
則有且得:
且
令,得,
故
又平面即為平面
平面的一個法向量,
∴所求銳二面角的余弦值為:
.
即平面與平面所成的銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有個不同的實(shí)數(shù)解,則的所有可能的值構(gòu)成的集合為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x),若任意t∈(a﹣1,a),使得f(t)>f(t+1),則實(shí)數(shù)a的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)
(1)證明:;
(2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的一個焦點(diǎn)與拋物線的焦點(diǎn)相同,,為橢圓的左、右焦點(diǎn),M為橢圓上任意一點(diǎn),若的面積最大值為1.
(1)求橢圓C的方程;
(2)設(shè)不過原點(diǎn)的直線l:與橢圓C交于不同的兩點(diǎn)A、B,若直線l的斜率是直線、斜率的等比中項(xiàng),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為,,過作一條直線與其兩條漸近線交于兩點(diǎn),若為等腰直角三角形,記雙曲線的離心率為,則______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個零點(diǎn),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且在上的最大值為,
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,π)內(nèi)的零點(diǎn)個數(shù),并加以證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x+1|.
(1)解不等式f(x)≥4.
(2)若f(x)+f(y)≤6,求x+y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com