【題目】已知函數(shù)的導(dǎo)函數(shù).

1)若,當時,函數(shù)內(nèi)有唯一的極大值,求的取值范圍;

2)若,,試研究的零點個數(shù).

【答案】1;(2個零點

【解析】

1)先求導(dǎo)得,再分兩種情況討論求得的取值范圍;(2)分析可知,只需研究時零點的個數(shù)情況,再分兩種情形討論即可.

1)當時,,

是減函數(shù),且,

①,當時,恒成立,是增函數(shù),無極值;

②,當,時,,使得,,,單調(diào)遞增;

,單調(diào)遞減,唯一的極大值點,所以

2,,,可知,

i時,,無零點;所以只需研究,

ii時,,可知單調(diào)遞減,

,,唯一的;

iii)當,是減函數(shù),且,,

,是增函數(shù),是減函數(shù),并且,,

所以,;,,且知單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減.

又因為,,,所以,

,,綜上所述,由(i)(ii)(iii)可知,個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為.

1)求拋物線C的方程;

2)設(shè)直線,對任意的拋物線C上都存在四個點到直線l的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的最大值為A,若存在實數(shù)使得對任意實數(shù)總有成立,則的最小值為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,給出以下四種排序:①M,N,T;②MT,N;③NT,M;④T,NM.從中任選一個,補充在下面的問題中,解答相應(yīng)的問題.

已知等比數(shù)列中的各項都為正數(shù),,且__________依次成等差數(shù)列.

(Ⅰ)求的通項公式;

(Ⅱ)設(shè)數(shù)列的前n項和為,求滿足的最小正整數(shù)n

注:若選擇多種排序分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)若,當時,函數(shù)內(nèi)有唯一的極大值,求的取值范圍;

2)若,,試研究的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某疫苗進行安全性臨床試驗.該疫苗安全性的一個重要指標是:注射疫苗后人體血液中的高鐵血紅蛋白(MetHb)的含量(以下簡稱為M含量)不超過1%,則為陰性,認為受試者沒有出現(xiàn)高鐵血紅蛋白血癥(簡稱血癥);若M含量超過1%,則為陽性,認為受試者出現(xiàn)血癥.若一批受試者的M含量平均數(shù)不超過0.65%,且出現(xiàn)血癥的被測試者的比例不超過5%,則認為該疫苗在M含量指標上是安全的;否則為不安全”.現(xiàn)有男、女志愿者各200名接受了該疫苗注射,按照性別分層,隨機抽取50名志愿者進行M含量的檢測,其中女性志愿者被檢測出陽性的恰好1.經(jīng)數(shù)據(jù)整理,制得頻率分布直方圖如下.(注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點值作代表.

1)請說明該疫苗在M含量指標上的安全性;

2)請利用樣本估計總體的思想,完成這400名志愿者的列聯(lián)表,并判斷是否有超過99%的把握認為,注射疫苗后,高鐵血紅蛋白血癥與性別有關(guān)?

陽性

陰性

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,bc為正實數(shù),且滿足a+b+c1.證明:

1|a|+|b+c1|;

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020312日,國務(wù)院新聞辦公室發(fā)布會重點介紹了改革開放40年,特別是黨的十八大以來我國脫貧攻堅、精準扶貧取得的顯著成績,這些成績?yōu)槿婷撠毘醪浇ǔ尚】瞪鐣於藞詫嵉幕A(chǔ).下圖是統(tǒng)計局公布的2010年~2019年年底的貧困人口和貧困發(fā)生率統(tǒng)計表.則下面結(jié)論正確的是(

(年底貧困人口的線性回歸方程為(其中年份-2019),貧困發(fā)生率的線性回歸方程為(其中年份-2009)

A.2010年~2019年十年間脫貧人口逐年減少,貧困發(fā)生率逐年下降

B.2012~2019年連續(xù)八年每年減貧超過1000萬,且2019年貧困發(fā)生率最低

C.2010年~2019年十年間超過1.65億人脫貧,其中2015年貧困發(fā)生率低于6

D.根據(jù)圖中趨勢線可以預(yù)測,到2020年底我國將實現(xiàn)全面脫貧

查看答案和解析>>

同步練習(xí)冊答案