設拋物線C:的焦點為F,經(jīng)過點F的直線與拋物線交于A、B兩點.
(1)若,求線段中點M的軌跡方程;
(2)若直線AB的方向向量為,當焦點為時,求的面積;
(3)若M是拋物線C準線上的點,求證:直線的斜率成等差數(shù)列.

(1)  ;(2)
(3)顯然直線的斜率都存在,分別設為
的坐標為
聯(lián)立方程組得到 ,
,得到

解析試題分析:
思路分析:(1) 利用“代入法”。
(2) 聯(lián)立方程組得,,應用弦長公式求 
,得到面積。
(3)直線的斜率都存在,分別設為
的坐標為
設直線AB:,代入拋物線得, 確定 ,
,得到
解:(1) 設,,焦點,則由題意,即 
所求的軌跡方程為,即 
(2) ,直線,
得,, 
,
(3)顯然直線的斜率都存在,分別設為
的坐標為
設直線AB:,代入拋物線得, 所以,
,,
因而
因而 
,故
考點:等差數(shù)列,求軌跡方程,直線與拋物線的位置關系。
點評:中檔題,涉及“弦中點”問題,往往利用“代入法”求軌跡方程。涉及直線與圓錐曲線的位置關系問題,往往通過聯(lián)立方程組,應用韋達定理,簡化解題過程。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱中心為坐標原點,上焦點為,離心率.

(Ⅰ)求橢圓的方程;
(Ⅱ)設軸上的動點,過點作直線與直線垂直,試探究直線與橢圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的焦點在軸上,離心率,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)斜率為的直線與橢圓相交于兩點,求證:直線的傾斜角互補.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的左焦點為,左、右頂點分別為,上頂點為,過三點作圓  
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點P為焦點F1關于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標及此定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

曲線C上任一點到定點(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標軸垂直的直線分別交曲線C于A、B兩點,且,設M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知拋物線的焦點在拋物線上.

(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過拋物線上的動點作拋物線的兩條切線, 切點為、.若的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案