設(shè)直線y=ax+3與圓x2+y2-2x-4y+1=0相交于A,B兩點(diǎn),且數(shù)學(xué)公式,則a=________.

0
分析:先確定圓心和半徑,然后利用圓中的垂徑定理求得圓心到直線的距離,從而簡歷關(guān)于a的方程,即可求得a的值.
解答:解:圓的方程可化為:(x-1)2+(y-2)2=4∴圓心C(1,2)半徑r=2
弦AB的中點(diǎn)為D,則|AD|==,由圓的性質(zhì)得圓心到直線的距離d==1
直線y=ax+3可化為ax-y+3=0∴C到直線的距離為=1
解得:a=0
故答案為:0
點(diǎn)評:本題考查了直線與圓相交的性質(zhì),注意圓中的直角三角形的應(yīng)用,避免聯(lián)立直線與圓的方程,是個(gè)基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線y=ax+3與圓x2+y2-2x-4y+1=0相交于A,B兩點(diǎn),且|AB|=2
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(-2,3),B(3,2),若直線y=ax-2與線段AB有交點(diǎn),則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市重點(diǎn)高中高考數(shù)學(xué)模擬試卷9(解析版) 題型:解答題

設(shè)直線y=ax+3與圓x2+y2-2x-4y+1=0相交于A,B兩點(diǎn),且,則a=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考考試策略專題訓(xùn)練(一)(解析版) 題型:解答題

設(shè)直線y=ax+3與圓x2+y2-2x-4y+1=0相交于A,B兩點(diǎn),且,則a=   

查看答案和解析>>

同步練習(xí)冊答案