【題目】已知函數(shù) .(Ⅰ)求函數(shù) 的最小正周期及單調(diào)遞增區(qū)間;(Ⅱ)將 的圖像向右平移 個單位得到函數(shù) 的圖像,若 ,求函數(shù) 的值域.

【答案】解:(Ⅰ)fx)=cosx sinx+cosx)+1
=cos2x+ sinxcosx+1
= cos2x+ sin2x+
=sin(2x+ )+
∵T= = =
即函數(shù)fx)的最小正周期為
fx)=sin(2x+ )+
由2k ≤2x+ ≤2k + ,
解得:- +k x +k ,
故函數(shù)fx)=sin(2x+ )+ 的單調(diào)遞增區(qū)間為[- +k , +k ], .
(Ⅱ) x [- , ],- ≤2x ,
∴- ≤1
∴函數(shù)的值域?yàn)?
【解析】(1)首先通過三角函數(shù)的二倍角正余弦公式恒等變換把三角函數(shù)的關(guān)系式變形成正弦函數(shù)進(jìn)一步利用三角函數(shù)的性質(zhì)求出函數(shù)的周期和單調(diào)區(qū)間。(2)利用(1)的結(jié)論進(jìn)一步利用函數(shù)的定義域求出三角函數(shù)的值域。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 是兩條不同的直線, 是三個不同的平面,給出下列四個命題:
①若 ,則 ②若 ,則
③若 ,則 ④若 ,則
其中正確命題的序號是( )
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,則y=f(x)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2且l1與l2的距離為5,求l1 , l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知N為自然數(shù)集,集合P={1,4,7,10,13},Q={2,4,6,8,10},則P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列 的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若曲線y=f(x)在P(1,f(1))處的切線平行于直線y=﹣x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,且對任意x∈(0,2e]時,f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|ax﹣4|﹣|ax+8|,a∈R
(Ⅰ)當(dāng)a=2時,解不等式f(x)<2;
(Ⅱ)若f(x)≤k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F(xiàn)分別是AP,AD的中點(diǎn).

求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

同步練習(xí)冊答案