3.求下列函數(shù)的導(dǎo)數(shù):
(1)y=(2x3-1)(3x2+x);
(2)y=3(2x+1)2-4x;
(3)y=$\frac{sinxlnx}{x}$;
(4)y=extanx.

分析 根據(jù)已知中原函數(shù)的解析式,結(jié)合導(dǎo)數(shù)的運(yùn)算性質(zhì)及導(dǎo)數(shù)公式,可得各函數(shù)的導(dǎo)函數(shù)解析式.

解答 解:(1)∵y=(2x3-1)(3x2+x),
∴y′=(2x3-1)′(3x2+x)+(2x3-1)(3x2+x)′
=6x2(3x2+x)+(2x3-1)(6x+1)
=30x4+8x3-6x-1;
(2)∵y=3(2x+1)2-4x,
∴y′=6(2x+1)×2-4
=24x+8;
(3)∵y=$\frac{sinxlnx}{x}$,
∴y′=$\frac{(cosx•lnx+sinx•\frac{1}{x})x-sinxlnx}{{x}^{2}}$
=$\frac{cosx•lnx•x+sinx-sinxlnx}{{x}^{2}}$;
(4)∵y=extanx=$\frac{{e}^{x}•sinx}{cosx}$,
∴y′=$\frac{{(e}^{x}•sinx+{e}^{x}•cosx)•cosx+{e}^{x}•si{n}^{2}x}{co{s}^{2}x}$
=$\frac{{e}^{x}(sinx•cosx+1)}{co{s}^{2}x}$.

點(diǎn)評 本題考查的知識點(diǎn)是導(dǎo)數(shù)運(yùn)算,熟練掌握導(dǎo)數(shù)的運(yùn)算性質(zhì)及導(dǎo)數(shù)公式,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x2-1)=logm$\frac{x^2}{{2-{x^2}}}$.
(1)求f(x)的解析式并判斷f(x)的奇偶性;
(2)解關(guān)于 x的不等式 f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某工廠第三年的產(chǎn)量比第一年的產(chǎn)量增加20%,若每年的平均增長率相同(設(shè)為x),則以下結(jié)論正確的是( 。
A.x=10%B.x<10%
C.x>10%D.x的大小由第一年的產(chǎn)量決定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A中只含有1,a2兩個元素,則實(shí)數(shù)a不能取的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)為二次函數(shù),-1和3是函數(shù)y=f(x)-x-4的兩個零點(diǎn),且f(0)=1
(Ⅰ) 求函數(shù)f(x)的解析式;
(Ⅱ) 設(shè)g(x)=f(x)-3x-6,求y=g(log3x)在區(qū)間$[\frac{1}{9},27]$上的最值,并求相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,AC=BC=1,∠ACB-90°,PA⊥平面ABC,CE∥PA,PA=2CE=2,
(1)求證:平面EPB⊥平面APB
(2)求二面角A-BE-P的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|(x+1)(x-2)<0},非空集合B={x|2a<x<6},則“A∩B=∅”的充分不必要條件可以是(  )
A.-1<a<2B.1≤a<3C.a>0D.1<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)上任一點(diǎn)(x0,f(x0))處的切線斜率$k=({{x_0}-2}){({{x_0}+1})^2}$,則該函數(shù)的單調(diào)遞減區(qū)間為(  )
A.[-1,+∞)B.(-∞,2]C.(-∞,-1),(1,2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案