(2012•江蘇一模)在斜三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c.
(1)若2sinAcosC=sinB,求
a
c
的值;
(2)若sin(2A+B)=3sinB,求
tanA
tanC
的值.
分析:(1)由2sinAcosC=sinB,可得sin(A-C)=0,故有A=C,故a=c,
a
c
=1.
(2)由sin(2A+B)=3sinB,可得 sin[(A+B)+A]=3sin[(A+B)-A],利用兩角和的正弦公式化簡(jiǎn)可得
tanA=
1
2
tan(A+B)=-
1
2
tanC,由此求得
tanA
tanC
的值.
解答:解:(1)∵2sinAcosC=sinB,∴2sinAcosC=sin(A+C)=sinAcosC+cosAsinC,
于是sinAcosC-cosAsinC=0,即sin(A-C)=0.…(3分)
因?yàn)锳,C為三角形的內(nèi)角,所以A-C∈(-π,π),從而A-C=0,
所以a=c,故
a
c
=1.…(7分)
(2)∵sin(2A+B)=3sinB,∴sin[(A+B)+A]=3sin[(A+B)-A],
故sin(A+B)cosA+cos(A+B)sinA=3sin(A+B)cosA-3cos(A+B)sinA,
故 4cos(A+B)sinA=2sin(A+B)cosA,∴tanA=
1
2
tan(A+B)=-
1
2
tanC,
tanA
tanC
=-
1
2
點(diǎn)評(píng):本題主要考查正、余弦定理、兩角和的三角函數(shù),應(yīng)提醒學(xué)生考慮“斜三角形”這個(gè)條件,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,過橢圓的右焦點(diǎn)且與x軸垂直的直線與橢圓交于P、Q兩點(diǎn),橢圓的右準(zhǔn)線與x軸交于點(diǎn)M,若△PQM為正三角形,則橢圓的離心率等于
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)觀察下列等式:
13=1,
13+23=9,
13+23+33=36,
13+23+33+43=100

猜想:13+23+33+43+…+n3=
[
n(n+1)
2
]2
[
n(n+1)
2
]2
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn+1=pSn+q(p,q為常數(shù),n∈N*),如果:a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)m,n,使
Sn-m
Sn+1-m
2m
2m+1
成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì)(m,n);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.
求證:BT平分∠OBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)選修4-2:矩陣與變換
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案