已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,點P是雙曲線右支上一點,且|
PF1
|=5|
PF2
|
,則雙曲線離心率的取值范圍是(  )
分析:由雙曲線的定義可得|PF1|-|PF2|=4|PF2|=2a,再根據(jù)點P在雙曲線的右支上,得
a
2
≥c-a,從而求得此雙曲線的離心率e的范圍.
解答:解:由雙曲線的定義可得|PF1|-|PF2|=2a,
結(jié)合條件可得:|PF1|-|PF2|=4|PF2|=2a,⇒|PF2|=
1
2
a,
根據(jù)點P在雙曲線的右支上,可得|PF2|≥|AF2|=c-a,
a
2
≥c-a,
c
a
3
2
,又e>1,
則雙曲線離心率的取值范圍是1<e≤
3
2

故選D.
點評:本題考查雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知F1、F2是雙曲數(shù)學(xué)公式的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年陜西省西安市西工大附中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊答案