設(shè)函數(shù)f(x)=
ax2+1
bx+c
是奇函數(shù)(a、b、c∈Z),且f(1)=2,f(2)<3.
(1)求f(x)的值;
(2)當(dāng)x<-1時(shí),判斷f(x)的單調(diào)性并證明你的結(jié)論.
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先由函數(shù)函數(shù)f(x)=
ax2+1
bx+c
是奇函數(shù)確定整數(shù)a,b,c的值,再通過(guò)定義法證明函數(shù)的單調(diào)性.
解答: 解:(1)由題意得,有
f(1)=
a+1
b+c
=2
f(-1)=
a+1
c-b
=-2
f(2)=
4a+1
2b+c
<3.
a、b、c∈Z
解得a=1,b=1,c=0
故f(x)=
x2+1
x

(2)任取x1,x2∈(∞,-1]且x1<x2<-1,則
f(x1)-f(x2)=
x12+1
x1
-
x22+1
x2
=
(x1x2-1)(x1-x2)
x1x2

∵x1<x2<-1
∴x1x2-1>0,x1-x2<0,x1x2>0
∴f(x1)-f(x2)<0
∴f(x)在(-∞,-1)上單調(diào)遞增.
點(diǎn)評(píng):本題考查了利用函數(shù)的奇偶性求參數(shù)的方法,及函數(shù)的單調(diào)性的判斷與證明,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義x∈[-1,1]在偶函數(shù)f(x)滿足:當(dāng)x∈[0,1]時(shí),f(x)=x+2
2-x
,函數(shù)g(x)=ax+5-2a(a>0),
(1)求函數(shù)f(x)在x∈[-1,1]上的解析式:
(2)若對(duì)于任意x1,x2∈[-1,1],都有g(shù)(x2)>f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=xlnx.
(1)證明:當(dāng)x≥1時(shí),2x-e≤f(x)恒成立(e為常數(shù));
(2)討論g(x)=
f(x)+k
x
(k∈R)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-2,
3
),F(xiàn)是橢圓
x2
16
+
y2
12
=1的右焦點(diǎn),點(diǎn)M在橢圓上,當(dāng)|MA|+|MF|取得最小值時(shí),點(diǎn)M的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),函數(shù)的解析式為f(x)=
2
x
-1,求函數(shù)f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1的離心率為
2
2
,且過(guò)點(diǎn)P(
2
2
,
1
2
),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn,n∈N*,則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c與直線y=mx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,-
1
2
)和(m-b,m2-mb+n),其中a,b,c,m,n為實(shí)數(shù),且a,m不為0.
(1)求c的值;
(2)設(shè)拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)是(x1,0)和(x2,0),求x1x2的值;
(3)當(dāng)-1≤x≤1時(shí),設(shè)拋物線y=ax2+bx+c上與x軸距離最大的點(diǎn)為P(xo,yo ),
求這時(shí)|yo|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x+
1
x
)=x2+
1
x2
,則f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案