4.橢圓$\frac{x^2}{{\sqrt{3m+1}}}$+$\frac{y^2}{2m}$=1的長(zhǎng)軸垂直x于軸,則m的取值范圍是(  )
A.m>0B.0<m<1C.m>1D.m>0且m≠1

分析 橢圓$\frac{x^2}{{\sqrt{3m+1}}}$+$\frac{y^2}{2m}$=1的長(zhǎng)軸垂直x于軸,可得橢圓的焦點(diǎn)在y軸上,即可得出.

解答 解:∵橢圓$\frac{x^2}{{\sqrt{3m+1}}}$+$\frac{y^2}{2m}$=1的長(zhǎng)軸垂直x于軸,
∴橢圓的焦點(diǎn)在y軸上,
∴2m>$\sqrt{3m+1}$>0,3m+1>0,
解得m>1.
故選:C.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=|log2x|,g(x)=$\left\{{\begin{array}{l}{0,0<x≤1}\\{\frac{1}{8}|{{x^2}-9}|,x>1}\end{array}}$,若方程f(x)-g(x)=1在[a,+∞)上有三個(gè)實(shí)根,則正實(shí)數(shù)a的取值范圍為(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.過拋物線x2=2py(p>0且為常數(shù))的焦點(diǎn)F作斜率為1的直線,交拋物線于A,B兩點(diǎn),求證:線段AB的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),
(1)求f(x)的解析式;
(2)若對(duì)于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C中心在原點(diǎn),左焦點(diǎn)為F(-$\sqrt{3}$,0),右頂點(diǎn)為A(2,0),設(shè)點(diǎn)B(3,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P是橢圓C上的動(dòng)點(diǎn),求線段PB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=log2(x2-x-2)的單調(diào)遞減區(qū)間是(  )
A.(-∞,-1)B.$(-1,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,則$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$的取值范圍為( 。
A.[2,6]B.[2,4]C.[1,6]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{2}{x},(x>\frac{1}{2})}\\{{x}^{2}+2x+a-1,(x≤\frac{1}{2})}\end{array}\right.$(其中a>0,a為常數(shù)),求函數(shù)f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若角θ的終邊過點(diǎn)P(3,-4),則sin(θ-π)=$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案