已知非零向量
a
b
,若|
a
|=|
b
|=1,且
a
b
,又知(2
a
+3
b
)⊥(k
a
-4
b
),則實數(shù)k的值為
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)已知條件可得出:
a
b
=0
,(2
a
+3
b
)•(k
a
-4
b
)
=0,所以進行數(shù)量積的運算,再根據(jù)|
a
|=|
b
|=1
,便能夠得到2k-12=0,所以k=6.
解答: 解:∵
a
b
,∴
a
b
=0
;
(2
a
+3
b
)⊥(k
a
-4
b
)

(2
a
+3
b
)•(k
a
-4
b
)=0
;
∴2k
a
2
+(3k-8)
a
b
-12
b
2
=0;
∴2k-12=0,k=6.
故答案為:6.
點評:考查兩非零向量垂直的充要條件,以及數(shù)量積的運算律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①函數(shù)f(x)=x+
a
x
(x>0)的最小值為2
a
;
②已知定義在R上周期為4的函數(shù)f(x)滿足f(2-x)=f(2+x),則f(x)一定為偶函數(shù);
③定義在R上的函數(shù)f(x)既是奇函數(shù)又是以2為周期的周期函數(shù),則f(1)+f(4)+f(7)=0;
④已知函數(shù)f(x)=ax3+bx2+cx+d(d≠0),則a+b+c=0是f(x)有極值的必要不充分條件;
⑤已知函數(shù)f(x)=x-sinx,若a+b>0,則f(a)+f(b)>0.
其中正確命題的序號為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根據(jù)以上式子可猜想:13+23+33+…+n3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義域在(0,+∞)上的單調(diào)函數(shù),且對于任意正數(shù)x,y有f(xy)=f(x)+f(y),已知f(2)=1.
(1)求f(
1
2
)的值;
(2)一個各項均為正數(shù)的數(shù)列{an}滿足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中Sn是數(shù)列{an}的前n項的和,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,是否存在正數(shù)M,使
2n•a1•a2…an≥M
2n+1
(2a2-1)
-(2a2-1)…(2an-1)對一切n∈N*成立?若存在,求出M的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2x2+ax+1-3a是定義域為R的偶函數(shù),則函數(shù)f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(2,5),直線l:2x-3y-2=0,點M與點A關(guān)于l對稱,
(1)求點M的坐標(biāo);
(2)若點B,C分別在直線l與y軸上運動,求△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的有
 
 (把所有正確的序號都填上).
①“?x∈R,使2x>3“的否定是“?x∈R,使2x≤3”;
②函數(shù)y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f'(x0)=0”的否命題是真命題;
④函數(shù)f(x)=2x-x2的零點有2個;
1
-1
1-x2
dx等于
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-
1
x
的圖象按向量
a
=(1,0)平移之后得到的函數(shù)圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象所有交點的橫坐標(biāo)之和等于(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“φ=
π
4
”是“函數(shù)y=sin(x+2φ)是偶函數(shù)”的(  )
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案