19.在“雙11”促銷活動(dòng)中,某商場(chǎng)對(duì)11月11日9時(shí)到14時(shí)的銷售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,已知12時(shí)到14時(shí)的銷售額為14萬元,則9時(shí)到11時(shí)的銷售額為( 。
A.3萬元B.6萬元C.8萬元D.10萬元

分析 根據(jù)頻率分布直方圖,利用頻率比與銷售額的比相等,即可求出對(duì)應(yīng)的值.

解答 解:根據(jù)頻率分布直方圖知,12時(shí)到14時(shí)的頻率為0.35,
9時(shí)到11時(shí)的頻率為0.25,
所以9時(shí)到11時(shí)的銷售額為:
14×$\frac{0.25}{0.35}$=10(萬元).
故選:D.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,以線段F1F2為直徑的圓與雙曲線漸近線一個(gè)交點(diǎn)為(4,3),則該雙曲線的實(shí)軸長(zhǎng)為( 。
A.6B.8C.4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某學(xué)校用“10分制”調(diào)查本校學(xué)生對(duì)教師教學(xué)的滿意度,現(xiàn)從學(xué)生中隨機(jī)抽取16名,以下莖葉圖記錄了他們對(duì)該校教師教學(xué)滿意度的分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(Ⅰ)若教學(xué)滿意度不低于9.5分,則稱該生對(duì)教師的教學(xué)滿意度為“極滿意”.求從這16人中隨機(jī)選取3人,至少有1人是“極滿意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校所有學(xué)生中(學(xué)生人數(shù)很多)任選3人,記X表示抽到“極滿意”的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是等差數(shù)列,a1+a2+a3=6,a5=5.
( I)求數(shù)列{an}的通項(xiàng)公式;
( II)若${b_n}={a_n}•{2^{a_n}},(n∈N*)$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F、G分別是BC、CC1、BB1的中點(diǎn).
(1)若BC=BB1,求證:BC1⊥平面AEG;
(2)若D為AB中點(diǎn),∠CA1D=45°,四棱錐C-A1B1BD的體積為$\frac{{\sqrt{6}}}{2}$,求三棱錐F-AEC的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)$\overrightarrow{a}$=(3,m),$\overrightarrow$=(1,-2),若$\overrightarrow{a}$•$\overrightarrow$+3$\overrightarrow$2=0,則實(shí)數(shù)m=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x+1|.
(1)解不等式f(x)<2x;
(2)若2f(x)+|x-a|>8對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a1=3,2a2=a4,則a7等于(  )
A.12B.15C.18D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a=log0.60.3,b=0.60.3,則( 。
A.a>1>bB.a>b>1C.b>a>1D.b>1>a

查看答案和解析>>

同步練習(xí)冊(cè)答案