已知橢圓的左、右焦點(diǎn)分別為,橢圓上的點(diǎn)滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為、,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.
(Ⅰ)橢圓的方程為;(Ⅱ)詳見(jiàn)解析.

試題分析:(Ⅰ)由焦點(diǎn)坐標(biāo)知:.又橢圓上的點(diǎn)滿足,由可求得,再由勾股定理可求得,從而求得.再由求得,從而得橢圓的方程.(Ⅱ)首先考慮軸垂直的情況,此時(shí)可求出直線與直線的交點(diǎn)為的方程是:,代入驗(yàn)證知點(diǎn)在直線上.當(dāng)直線不與軸垂直時(shí),設(shè)直線的方程為,點(diǎn)、,則,要證明共線,只需證明,即證明.
,顯然成立;若, 即證明
,這顯然用韋達(dá)定理.
試題解析:(Ⅰ)由題意知:,                 1分
橢圓上的點(diǎn)滿足,且,

,
                      2分
                      3分
橢圓的方程為.                     4分
(Ⅱ)由題意知、,
(1)當(dāng)直線軸垂直時(shí),、,則的方程是:,
的方程是:,直線與直線的交點(diǎn)為,
∴點(diǎn)在直線上.                          6分
(2)當(dāng)直線不與軸垂直時(shí),設(shè)直線的方程為,,

,                   7分
,共線,∴      8分
,,需證明共線,
需證明,只需證明
,顯然成立,若, 即證明

成立,                 11分
共線,即點(diǎn)總在直線上.               12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于點(diǎn).
(Ⅰ)若(點(diǎn)在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)過(guò)點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)的橢圓的右焦點(diǎn)為,過(guò)焦點(diǎn)且與軸不重合的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,直線,分別交橢圓的右準(zhǔn)線,兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為,試求直線的方程;
(3)記,兩點(diǎn)的縱坐標(biāo)分別為,試問(wèn)是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓與雙曲線有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)為A、關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且L與的兩個(gè)焦點(diǎn)A和B滿足(其中O為原點(diǎn)),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則方程表示的曲線不可能是(   )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線上一點(diǎn)P到y(tǒng)軸的距離為5,則點(diǎn)P到焦點(diǎn)的距離為(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓內(nèi)有一點(diǎn),過(guò)點(diǎn)的弦恰好以為中點(diǎn),那么這條弦所在直線的斜率為     ,直線方程為      

查看答案和解析>>

同步練習(xí)冊(cè)答案