“我們稱使f(x)=0的x為函數(shù)y=f(x)的零點.若函數(shù)y=f(x)在區(qū)間[a,b]上是連續(xù)的、單調(diào)的函數(shù),且滿足f(a)·f(b)<0,則函數(shù)y=f(x)在區(qū)間[a,b]上有唯一的零點”.對于函數(shù)f(x)=-x3+x2+x+m.

(1)當(dāng)m=0時,討論函數(shù)f(x)=-x3+x2+x+m在定義域內(nèi)的單調(diào)性并求出極值;

(2)若函數(shù)f(x)=-x3+x2+x+m有三個零點,求實數(shù)m的取值范圍.

解:(1)當(dāng)m=0時,f(x)=-x3+x2+x.∴f′(x)=-3x2+2x+1=-3(x+)(x-1).

列表

x

(-∞,)

(,1)

1

(1,+∞)

f′(x)

0

+

0

-

f(x)

極小值f()

極大值f(1)

由表可知:函數(shù)f(x)=-x3+x2+x在區(qū)間[,1]上單調(diào)遞增,在(-∞,)∪(1,+∞)上單調(diào)遞減. f(x)的極小值為f()=.極大值為f(1)=1.

(2)由(1)知,當(dāng)x=時,f(x)取得極小值f()=++m=m.

當(dāng)x=1時,f(x)取得極大值f(1)=-1+1+1+m=m+1.

當(dāng)即-1<m<時,

f(-1)=1+1-1+m=m+1>0,f()=m-<0,f(1)=m+1>0,f(2)=m-2<0.

∴f(x)=-x3+x2+x+m在[-1,]上有唯一零點,在(,1]上有唯一零點,在(1,2]上有唯一零點.

又f(x)=-x3+x2+x+m在(-∞,-1]上單調(diào)遞減,在[2,+∞)上單調(diào)遞減,

∴在(-∞,-1]上恒有f(x)≥f(-1)>0,在?[2,+∞)?上恒有f(x)≤f(2)<0.

∴f(x)=-x3+x2+x+m在(-∞,-1]和?[2,+∞)?上無零點.

∴-1<m<時,函數(shù)f(x)=-x3+x2+x+m有三個零點.

∴所求實數(shù)m的取值范圍是(-1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆高考數(shù)學(xué)第一輪復(fù)習(xí)測試題8 題型:044

(理)“我們稱使f(x)=0的x為函數(shù)y=f(x)的零點.若函數(shù)y=f(x)在區(qū)間[a,b]上是連續(xù)的、單調(diào)的函數(shù),且滿足f(a)·f(b)<0,則函數(shù)y=f(x)在區(qū)間[a,b]上有唯一的零點”.對于函數(shù)f(x)=-x3+x2+x+m.

(1)當(dāng)m=0時,討論函數(shù)f(x)在定義域內(nèi)的單調(diào)性并求出極值;

(2)若函數(shù)f(x)有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省寬甸第二中學(xué)2011屆高三第一次月考試?yán)砜茢?shù)學(xué)試題 題型:044

已知函數(shù)f(x)=-a2x2+ax+lnx(a∈R).

(Ⅰ)我們稱使f(x)=0成立的x為函數(shù)的零點.證明:當(dāng)a=1時,函數(shù)f(x)只有一個零點;

(Ⅱ)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省蒼南縣錢高、靈溪二高2011屆高三上學(xué)期第一次月考聯(lián)考文科數(shù)學(xué)試題 題型:044

已知函數(shù)f(x)=-a2x2+ax+lnx(a∈R).

(Ⅰ)我們稱使f(x)=0成立的x為函數(shù)的零點.證明:當(dāng)a=1時,函數(shù)f(x)只有一個零點;

(Ⅱ)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“我們稱使f(x)=0的x為函數(shù)yf(x)的零點.若函數(shù)yf(x)在區(qū)間[ab]上是連續(xù)的、單調(diào)的函數(shù),且滿足f(af(b)<0,則函數(shù)yf(x)在區(qū)間[a,b]上有唯一的零點”.對于函數(shù)f(x)=6ln(x+1)-x2+2x-1.

(1)討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性,并求出函數(shù)極值;

(2)證明連續(xù)函數(shù)f(x)在[2,+∞)內(nèi)只有一個零點.

查看答案和解析>>

同步練習(xí)冊答案