某人上樓梯,每步上一階的概率為,每步上二階的概率為,設(shè)該人從臺(tái)階下的平臺(tái)開始出發(fā),到達(dá)第n階的概率為Pn
(Ⅰ)求P2;
(Ⅱ)該人共走了5步,求該人這5步共上的階數(shù)ξ的數(shù)學(xué)期望.
【答案】分析:(1)由題意得:從平臺(tái)到達(dá)第二階有二種走法:走兩步,或一步到達(dá),由互斥事件的概率公式計(jì)算可得答案.
(2)該人走了五步,共上的階數(shù)ξ取值為5,6,7,8,9,10.由題意得出ξ的分布列,進(jìn)而根據(jù)公式求出其數(shù)學(xué)期望.
解答:解:(1)從平臺(tái)到達(dá)第二階有二種走法:走兩步,或一步到達(dá),
故概率為P2==
(2)該人走了五步,共上的階數(shù)ξ取值為5,6,7,8,9,10   
ξ的分布列為:
ξ5678910

P
E(ξ)=5×(5+6×+7×+8×+9×+10×=
故該人這5步共上的階數(shù)ξ的數(shù)學(xué)期望為
點(diǎn)評(píng):解決此類問題的關(guān)鍵是準(zhǔn)確把握條件,熟練掌握各種概率的計(jì)算公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某人上樓梯,每步上一階的概率為
2
3
,每步上二階的概率為
1
3
,設(shè)該人從臺(tái)階下的平臺(tái)開始出發(fā),到達(dá)第n階的概率為Pn
(Ⅰ)求P2;
(Ⅱ)該人共走了5步,求該人這5步共上的階數(shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人上樓梯,每步上一階的概率為,每步上二階的概率,設(shè)該人從臺(tái)階下的平臺(tái)開始出發(fā),到達(dá)第n階的概率為Pn.

求P2;

該人共走了5,求該人這5步共上的階數(shù)x的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西南昌10所省高三第二次模擬沖刺理科數(shù)學(xué)試卷(七)(解析版) 題型:解答題

 某人上樓梯,每步上一階的概率為,每步上二階的概率為,設(shè)該人從臺(tái)階下的平臺(tái)開始出發(fā),到達(dá)第階的概率為.

(1)求;;

(2)該人共走了5步,求該人這5步共上的階數(shù)ξ的數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人上樓梯,每步上一階的概率為
2
3
,每步上二階的概率為
1
3
,設(shè)該人從臺(tái)階下的平臺(tái)開始出發(fā),到達(dá)第n階的概率為Pn
(Ⅰ)求P2;
(Ⅱ)該人共走了5步,求該人這5步共上的階數(shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案