某學(xué)生對其30位親屬的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表:
主食蔬菜主食肉類合計
50歲以下
50歲以上
合計
(2)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān),并寫出簡要分析.附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

下表
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k0]1.3232.0722.7063.8415.0246.6357.87910.828

(1)根據(jù)莖葉圖所給的數(shù)據(jù),得到2×2的列聯(lián)表:
主食蔬菜主食肉類合計
50歲以下4812
50歲以上16218
合計201030
(2)k2=
30×(8-128)2
12×18×20×10
=10>6.635
故有99%的把握認(rèn)為員工的飲食習(xí)慣與年齡有關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球, 乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(1)求取出的4個球均為黑球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設(shè)為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“回歸”這個詞是由英國著名的統(tǒng)計學(xué)家FrancilsGalton提出來的.1889年,他在研究祖先與后代身高之間的關(guān)系時發(fā)現(xiàn),身材較高的父母,他們的孩子也較高,但這些孩子的平均身高并沒有他們父母的平均身高高;身材較矮的父母,他們的孩子也較矮,但這些孩子的平均身高卻比他們的父母的平均身高高.Galton把這種后代的身高向中間值靠近的趨勢稱為“回歸現(xiàn)象”.根據(jù)他研究的結(jié)果,在兒子的身高y與父親的身高x的回歸方程
y
=a+bx
中,b的值( 。
A.在(-1,0)內(nèi)B.在(-1,1)內(nèi)C.在(0,1)內(nèi)D.在[1,+∞)內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(℃)1011131286
就診人數(shù)y(人)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=bx+a;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

隨著人們經(jīng)濟(jì)收入的不斷增長,個人購買家庭轎車已不再是一種時尚.車的使用費用,尤其是隨著使用年限的增多,所支出的費用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司作了一次抽樣調(diào)查,并統(tǒng)計得出某款車的使用年限x與所支出的總費用y(萬元)有如下的數(shù)據(jù)資料:
使用年限x23456
總費用y2.23.85.56.57.0
(1)在給出的坐標(biāo)系中做出散點圖;
(2)求線性回歸方程
y
=
b
x+
a
中的
a
、
b
;
(3)估計使用年限為10年時,車的使用總費用是多少?
(最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
-2
x
,
a
=
.
y
-
b
.
x
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解某市心肺疾病是否與性別有關(guān),某醫(yī)院隨機對入院50人進(jìn)行了問卷調(diào)查,得到如下的列聯(lián)表.
患心肺疾病不患心肺疾病合計
5
10
合計50
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
3
5
,
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給出如下2×2列聯(lián)表
患心臟病患其它病合計
高血壓201030
不高血壓305080
合計5060110
由以上數(shù)據(jù)判斷高血壓與患心臟病之間在多大程度上有關(guān)系?
(參考數(shù)據(jù):P(Χ2≥6.635)=0.010,P(Χ2≥7.879)=0.005)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩個班級進(jìn)行一門考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
班級與成績列聯(lián)表
利用列聯(lián)表的獨立性檢驗判斷,是否能夠以99%的把握認(rèn)為“成績與班級有關(guān)系”
附表:K2的臨界值表:
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某籃球決賽在廣東隊與山東隊之間進(jìn)行,比賽采用7局4勝制,即若有一隊先勝4場,則此隊獲勝,比賽就此結(jié)束.因兩隊實力相當(dāng),每場比賽兩隊獲勝的可能性均為.據(jù)以往資料統(tǒng)計,第一場比賽組織者可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元,則組織者在此次決賽中要獲得的門票收入不少于390萬元的概率為________.

查看答案和解析>>

同步練習(xí)冊答案