如圖,在體積為的正三棱錐中,長為,為棱的中點,求
(1)異面直線與所成角的大小(結果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.
(1);(2).
解析試題分析:(1)本題求異面直線所成的角,根據(jù)定義要把這個角作出來,一般平移其中一條,到與另一條相交為此,題中由于有的中點,因此我們以中點,就有,那么就是所求的角(或其補角);(2)要求正三棱錐的表面積,必須求得斜高,由已知體積,可以先求得棱錐的高,取的中心,那么就是棱錐的高,下面只要根據(jù)正棱錐的性質(正棱錐中的直角三角形)應該能求得側棱長或斜高,有了斜高,就能求得棱錐的側面積了,再加上底面積,就得到表面積了.
試題解析:(1)過點作平面,垂足為,則為的中心,由得(理1分文2分)
又在正三角形中得,所以 (理2分文4分)
取中點,連結、,故∥,
所以就是異面直線與所成的角.(理4分文6分)
在△中,,, (理5分文8分)
所以. (理6分文10分)
所以,異面直線與所成的角的大小為. (理7分文12分)
(2)由可得正三棱錐的側面積為
(理10分)
所以正三棱錐的表面積為
. (理12分)
考點:(1)異面直線所成的角;(2)棱錐的體積與表面積.
科目:高中數(shù)學 來源: 題型:解答題
(2013•重慶)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,,BC=CD=2,.
(1)求證:BD⊥平面PAC;
(2)若側棱PC上的點F滿足PF=7FC,求三棱錐P﹣BDF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動點.
(1)試確定點M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知正方形的邊長為,點分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得.
(1)求五棱錐的體積;
(2)求平面與平面的夾角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個幾何體的三視圖如下圖所示,已知正(主)視圖是底邊長為1的平行四邊形,側(左)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形.
(1)求該幾何體的體積V;
(2)求該幾何體的表面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com