已知橢圓的右焦點(diǎn)為F,A為短軸的一個(gè)端點(diǎn),且,的面積為1(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)若C、D分別是橢圓長軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足,連結(jié)CM,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

(1).(2)見解析;(3)存在,使得以為直徑的圓恒過直線的交點(diǎn).

解析試題分析:(1)由已知:,可得,,可得橢圓方程為.
(2)由(1)知,設(shè).根據(jù).
消去,整理得:,
應(yīng)用韋達(dá)定理得
利用平面向量的坐標(biāo)運(yùn)算即得(定值).
(3)以為直徑的圓恒過的交點(diǎn),
,建立Q坐標(biāo)的方程.
試題解析:(1)由已知:,,,
所以橢圓方程為.          4分
(2)由(1)知,.
由題意可設(shè).

消去,整理得:,

.,

(定值).    9分
(3)設(shè).
若以為直徑的圓恒過的交點(diǎn),
.
由(2)可知:,
,
恒成立,
∴存在,使得以為直徑的圓恒過直線、的交點(diǎn).          13分
考點(diǎn):橢圓的幾何性質(zhì),直線與圓錐曲線的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)分別為,交于兩點(diǎn)(為坐標(biāo)原點(diǎn)),且.
(1)求拋物線的方程;
(2)過點(diǎn)的直線交的下半部分于點(diǎn),交的左半部分于點(diǎn),點(diǎn)坐標(biāo)為,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿足:,動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)任作一直線與點(diǎn)的軌跡交于兩點(diǎn),直線與直線分別交于點(diǎn)為坐標(biāo)原點(diǎn));
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知,是橢圓上不同的三點(diǎn),,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線PB,PC分別交直線OA兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓E:的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓EA,B兩點(diǎn),線段AB的中點(diǎn)為M,直線交橢圓EC,D兩點(diǎn).

(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線上;
(3)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦距為,過右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)設(shè)斜率為的直線相交于、兩點(diǎn),記面積的最大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線兩點(diǎn),若成等比數(shù)列.

(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線過點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對于直線,m+n是否為定值?
若是,求出m+n的值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線x2=4y的焦點(diǎn)為F,過焦點(diǎn)F且不平行于x軸的動(dòng)直線交拋物線于A、B兩點(diǎn),拋物線在A、B兩點(diǎn)處的切線交于點(diǎn)M.

(1)求證:A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點(diǎn),求四邊形ACBD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案