【題目】當(dāng)x∈[﹣2,1]時(shí),不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是

【答案】[﹣6,﹣2]
【解析】解:當(dāng)x=0時(shí),不等式ax3﹣x2+4x+3≥0對(duì)任意a∈R恒成立; 當(dāng)0<x≤1時(shí),ax3﹣x2+4x+3≥0可化為a≥
令f(x)= ,則f′(x)=﹣ + + =﹣ (*),
當(dāng)0<x≤1時(shí),f′(x)>0,f(x)在(0,1]上單調(diào)遞增,
f(x)max=f(1)=﹣6,∴a≥﹣6;
當(dāng)﹣2≤x<0時(shí),ax3﹣x2+4x+3≥0可化為a≤ ,
由(*)式可知,當(dāng)﹣2≤x<﹣1時(shí),f′(x)<0,f(x)單調(diào)遞減,當(dāng)﹣1<x<0時(shí),f′(x)>0,f(x)單調(diào)遞增,
f(x)min=f(﹣1)=﹣2,∴a≤﹣2;
綜上所述,實(shí)數(shù)a的取值范圍是﹣6≤a≤﹣2,即實(shí)數(shù)a的取值范圍是[﹣6,﹣2].
所以答案是:[﹣6,﹣2].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下:0001,0002,003,…,1000,打算從中抽取一個(gè)容量為50的樣本,按系統(tǒng)抽樣的方法把編號(hào)分成50個(gè)部分,如果第一部分編號(hào)為0001,0002,0003,…,0020,第一部分隨機(jī)抽取一個(gè)號(hào)碼為0013,那么抽取的第40個(gè)號(hào)碼

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有編號(hào)為1,2,3的三個(gè)白球,編號(hào)為4,5,6的三個(gè)黑球,這六個(gè)球除編號(hào)和顏色外完全相同,現(xiàn)從中任意取出兩個(gè)球.
(1)求取得的兩個(gè)球顏色相同的概率;
(2)求取得的兩個(gè)球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(3)求證:對(duì)任意的正數(shù)a與b,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù)y=2sin(2x+ )的圖象,只需把函數(shù)y=2sinx的圖象(
A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)
B.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍(縱坐標(biāo)不變)
C.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再把所得圖象向左平移 個(gè)單位長(zhǎng)度
D.各點(diǎn)的縱坐標(biāo)不變、橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,再把所得圖象向左平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ax2+4x﹣lnx.
(1)當(dāng)a=﹣3時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時(shí),若f(x)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:

(2)設(shè)函數(shù) ,且有兩個(gè)不同的零點(diǎn)

①求實(shí)數(shù)的取值范圍; ②求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x,y滿足約束條件 ,且向量 =(3,2), =(x,y),則 的取值范圍(
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線過(guò)點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長(zhǎng)為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案