A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2}{3}$ |
分析 根據(jù)函數(shù)的最高點(diǎn)和最低點(diǎn)可得A的值,根據(jù)圖象T=$\frac{5π}{12}-(-\frac{7π}{12})$=π,可得ω,圖象過(guò)($-\frac{7π}{12}$,-$\frac{2}{3}$)帶入求解φ,可函數(shù)f(x)的解析式.可得f($\frac{π}{12}$)的值.
解答 解:由圖象知最高點(diǎn)為$\frac{2}{3}$,最低點(diǎn)為$-\frac{2}{3}$,∴A=$\frac{2}{3}$
根據(jù)圖象T=$\frac{5π}{12}-(-\frac{7π}{12})$=π,∴ω=$\frac{2π}{T}$=2.
∵圖象過(guò)($-\frac{π}{12}$,$\frac{2}{3}$)帶入可得:$\frac{2}{3}=\frac{2}{3}sin(-2×\frac{π}{12}+φ)$,
得:φ-$\frac{π}{6}$=$\frac{π}{2}$+2kπ,(k∈Z)
φ=$\frac{2π}{3}+2kπ$,(k∈Z)
那么:函數(shù)f(x)=$\frac{2}{3}$sin(2x$+\frac{2π}{3}$+2kπ)=$\frac{2}{3}$sin(2x$+\frac{2π}{3}$)
當(dāng)x=$\frac{π}{12}$時(shí),即f($\frac{π}{12}$)=$\frac{2}{3}$sin(2×$\frac{π}{12}$$+\frac{2π}{3}$)=$\frac{1}{3}$
故選A.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{10}$ | B. | $\frac{4}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com