將半徑為R的4個(gè)球完全裝入正四面體中,這個(gè)正四面體的高最小值為
 
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:底面放三個(gè)鋼球,上再落一個(gè)鋼球時(shí)體積最小,把鋼球的球心連接,則又可得到一個(gè)棱長(zhǎng)為2R的小正四面體,正四面體的中心到底面的距離是高的
1
4
,且小正四面體的中心和正四面體容器的中心應(yīng)該是重合的,先求出小正四面體的中心到底面的距離,再求出正四面體的中心到底面的距離,把此距離乘以4可得正四棱錐的高.
解答: 解:由題意知,底面放三個(gè)鋼球,上再落一個(gè)鋼球時(shí)體積最。
于是把鋼球的球心連接,則又可得到一個(gè)棱長(zhǎng)為2R的小正四面體,則不難求出這個(gè)小正四面體的高為
2
6
3
R,
且由正四面體的性質(zhì)可知:正四面體的中心到底面的距離是高的
1
4
,且小正四面體的中心和正四面體容器的中心應(yīng)該是重合的,
∴小正四面體的中心到底面的距離是
2
6
3
1
4
=
6
6
R,正四面體的中心到底面的距離是(
6
6
+1)R,
所以可知正四棱錐的高的最小值為(
6
6
+1)R×4=(4+
2
6
3
)R,
故答案為:(4+
2
6
3
)R.
點(diǎn)評(píng):小正四面體是由球心構(gòu)成的,正四面體的中心到底面的距離等于小正四面體的中心到底面的距離再加上小鋼球的半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1<x<2},B={x|1<x<3},則A∩B=
 
,A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,-4),若
a
b
,則
a
.
b
=( 。
A、-7B、-8C、-9D、-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(2,2),點(diǎn)M是圓O1:x2+(y-1)2=
1
4
上的動(dòng)點(diǎn),點(diǎn)N是圓O2:(x-2)2+y2=
1
4
上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(  )
A、
5
-1
B、
5
-2
C、2-
5
D、3-
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+sinx-cosx
sinx
,求f(x)的最小正周期及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x=-
1
4
為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為( 。
A、y2=
1
2
x
B、y2=x
C、x2=
1
2
y
D、x2=y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
3
×
31.5
×
612
+1g
1
4
-1g25=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,0),B(2,2),若點(diǎn)C滿足
OC
=
OA
+t(
OB
-
OA
),其中t∈R,求點(diǎn)C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
1+i
1-i
 (i
為虛數(shù)單位),則
.
z
=( 。
A、1B、-1C、iD、-i

查看答案和解析>>

同步練習(xí)冊(cè)答案