設(shè)a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)=f(0)
,
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC三內(nèi)角A,B,C所對邊分別為a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.
(Ⅰ)f(x)=asinxcosx-cos2x+sin2x=
a
2
sin2x-cos2x

f(-
π
3
)=f(0)
-
3
2
a
2
+
1
2
=-1
,解得a=2
3

因此f(x)=
3
sin2x-cos2x=2sin(2x-
π
6
)

-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ,k∈Z

-
π
6
+kπ≤x≤
π
3
+kπ,k∈Z

故函數(shù)f(x)=的單調(diào)遞增區(qū)間[-
π
6
+kπ,
π
3
+kπ](k∈Z)
(6分)
(Ⅱ)由余弦定理知:
a2+c2-b2
a2+b2-c2
=
2accosB
2abcosC
=
ccosB
bcosC
=
c
2a-c

即2acosB-ccosB=bcosC,
又由正弦定理知:2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA
cosB=
1
2
,所以B=
π
3

當(dāng)x∈(0,
π
3
]
時(shí),2x-
π
6
∈(-
π
6
,
π
2
]
,f(x)∈(-1,2]
故f(x)在(0,B]上的值域?yàn)椋?1,2](12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)=f(0)

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若x∈[
π
4
,
17π
24
]
,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)
=f(0),
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[
π
4
,
11π
24
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)設(shè)a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)=f(0)
,
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC三內(nèi)角A,B,C所對邊分別為a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,f(x)=
a•2x+a-2
2x+1
(x∈R)
是奇函數(shù);
(1)求常數(shù)a的值
(2)實(shí)數(shù)k>0,解關(guān)于x的不等式:f-1(x)>log2
1+x
k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=x2+|x-a|+1,x∈R,求f(x)的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案