【題目】, ,的內(nèi)心,,其中,動點的軌跡所覆蓋的面積為( )

A. B. C. D.

【答案】A

【解析】

畫出圖形,由已知條件便知P點在以BD, BP為鄰邊的平行四邊形內(nèi),從而所求面積為2

倍的△AOB的面積,從而需求SAOB:由余弦定理可以求出AB的長為5,根據(jù)O為△ABC

的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求

出△ABC的面積,從而求出△AOB的面積,這樣2SAOB便是所求的面積.

如圖,根據(jù)題意知,P點在以BP,BD為鄰邊的平行四邊形內(nèi)部,

∴動點P的軌跡所覆蓋圖形的面積為2SAOB;

在△ABC中,cos,AC=6,BC=7;

∴由余弦定理得,

解得:AB=5,或AB=(舍去);

O為△ABC的內(nèi)心;

所以內(nèi)切圓半徑r=,

所以

==

∴動點P的軌跡所覆蓋圖形的面積為

故答案為:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A{x|2x3}B{x|x+2)(xa)<0},則a1”AB____條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.

圖231

將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.

(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;

(2)用X表示在未來3天里日銷售量不低于100個的天數(shù),求隨機變量X的分布列,期望E(X)及方差D(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,點為曲線上任意一點且滿足

1)求曲線的方程;

2)設(shè)曲線 軸交于兩點,點是曲線上異于的任意一點,直線分別交直線于點,試問軸上是否存在一個定點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)對一切x∈(0,+∞),f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a=﹣1時,求函數(shù)f(x)在區(qū)間[m,m+3](m>0)上的最值;
(3)證明:對一切x∈(0,+∞),都有 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對任意的,都有且當(dāng)時, ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個不同的實數(shù)根,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬元,并且每生產(chǎn)1百臺產(chǎn)品需增加投入0.8萬元.已知銷售收入(萬元)滿足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺),假定生產(chǎn)的產(chǎn)品都能賣掉,請完成下列問題:

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究黏蟲孵化的平均溫度(單位:)與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗得到以下6組數(shù)據(jù):

他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖:

經(jīng)過計算,,.

(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個模型?(給出判斷即可,不必說明理由)

(2)殘差絕對值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到).

參考公式:線性回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進三個等級進行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:

表一:男生

表二:女生

(1)從表二的非優(yōu)秀學(xué)生中隨機抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;

(2)由表中統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

同步練習(xí)冊答案