已知雙曲線的右焦點為,若過且傾斜角為的直線與雙曲線的右支有且只有一個交點,則雙曲線離心率的取值范圍是(  )

A.          B.           C.              D.

 

【答案】

A

【解析】

試題分析:由漸進線的斜率.又因為過且傾斜角為的直線與雙曲線的右支有且只有一個交點,所以.所以.故選A.本小題關(guān)鍵是對比漸近線與過焦點的直線的斜率的大小.

考點:1.雙曲線的漸近線.2.離心率.3.雙曲線中量的關(guān)系.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則此雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①當(dāng)a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y

②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-
1
4a
;
④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右焦點為F(3,0),且以直線x=1為右準(zhǔn)線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中所有正確命題的序號為
①②
①②

①當(dāng)a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P(-2,3);
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的焦點坐標(biāo)為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右焦點為F,過F作雙曲線一條漸近線的垂線,垂足為A,過A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點),則此雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊答案