【題目】已知數(shù)列{an}滿足a1=1,|an+1﹣an|=pn , n∈N*
(1)若{an}是遞增數(shù)列,且a1 , 2a2 , 3a3成等差數(shù)列,求p的值;
(2)若p= ,且{a2n1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式.

【答案】
(1)解:∵數(shù)列{an}是遞增數(shù)列,∴an+1﹣an>0,

則|an+1﹣an|=pn化為:an+1﹣an=pn,

分別令n=1,2可得,a2﹣a1=p, ,

即a2=1+p,

∵a1,2a2,3a3成等差數(shù)列,∴4a2=a1+3a3,

即4(1+p)=1+3(p2+p+1),

化簡得3p2﹣p=0,解得 或0,

當p=0時,數(shù)列an為常數(shù)數(shù)列,不符合數(shù)列{an}是遞增數(shù)列,

;


(2)解:由題意可得,|an+1﹣an|= ,

則|a2n﹣a2n1|= ,|a2n+2﹣a2n+1|= ,

∵數(shù)列{a2n1}是遞增數(shù)列,且{a2n}是遞減數(shù)列,

∴a2n+1﹣a2n1>0,且a2n+2﹣a2n<0,

則﹣(a2n+2﹣a2n)>0,兩不等式相加得

a2n+1﹣a2n1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n1﹣a2n

又∵|a2n﹣a2n1|= >|a2n+2﹣a2n+1|= ,

∴a2n﹣a2n1>0,即 ,

同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,

則a2n+1﹣a2n=

當數(shù)列{an}的項數(shù)為偶數(shù)時,令n=2m(m∈N*),

, , ,…, ,

這2m﹣1個等式相加可得,

= =

;

當數(shù)列{an}的項數(shù)為奇數(shù)時,令n=2m+1(m∈N*

, , ,…, ,

這2m個等式相加可得,

= = ,

,且當m=0時a1=1符合,

,

綜上得,


【解析】(1)根據(jù)條件去掉式子的絕對值,分別令n=1,2代入求出a2和a3 , 再由等差中項的性質(zhì)列出關(guān)于p的方程求解,利用“{an}是遞增數(shù)列”對求出的p的值取舍;(2)根據(jù)數(shù)列的單調(diào)性和式子“|an+1﹣an|=pn”、不等式的可加性,求出 和a2n+1﹣a2n= ,再對數(shù)列{an}的項數(shù)分類討論,利用累加法和等比數(shù)列前n項和公式,求出數(shù)列{an}的奇數(shù)項、偶數(shù)項對應(yīng)的通項公式,再用分段函數(shù)的形式表示出來.
【考點精析】利用數(shù)列的前n項和和數(shù)列的通項公式對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24 屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

(1)根據(jù)上表說明,能否有的把握認為,收看開幕式與性別有關(guān)?

(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會志愿者宣傳活動.若從這12人中隨機選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設(shè)選取的3 人中女生人數(shù)為,寫出的分布列,并求.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的最值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)試說明是否存在實數(shù)使的圖象與無公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩點到直線的距離都等于,則直線有( )條

A. 1條B. 2條C. 3條D. 4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 .現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲利潤120萬元;若新產(chǎn)品B研發(fā)成功,預(yù)計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班名同學的數(shù)學小測成績的頻率分布表如圖所示,其中,且分數(shù)在的有人.

(1)求的值;

(2)若分數(shù)在的人數(shù)是分數(shù)在的人數(shù)的,求從不及格的人中任意選取3人,其中分數(shù)在50分以下的人數(shù)為,求的數(shù)學期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若,時,有成立

1判斷上的單調(diào)性,并證明;

2解不等式:;

3對所有的恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線(b>a>0),O為坐標原點,離心率,點在雙曲線上.

(1)求雙曲線的方程;

(2)若直線與雙曲線交于P、Q兩點,且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

同步練習冊答案