(09年朝陽區(qū)統(tǒng)考)(14分)

已知點為拋物線的焦點,點是準線上的動點,直線交拋物線兩點,若點的縱坐標為,點為準線軸的交點.

(Ⅰ)求直線的方程;

(Ⅱ)求的面積范圍;

(Ⅲ)設,,求證為定值.

解析:(Ⅰ)由題知點的坐標分別為,,

于是直線的斜率為,

所以直線的方程為,即為.…………………3分

(Ⅱ)設兩點的坐標分別為,

所以,

于是

到直線的距離

所以.

因為,于是

所以的面積范圍是.         …………………………………9分

(Ⅲ)由(Ⅱ)及,,得

,

于是,).

所以

所以為定值.               ……………………………………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)統(tǒng)考)(14分)

已知函數(shù)的圖象過點,且在點處的切線與直線垂直.

(Ⅰ)若,試求函數(shù)的單調區(qū)間;

(Ⅱ)若,且函數(shù)上單調遞增,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)統(tǒng)考)(13分)

設數(shù)列的前項和為,且,數(shù)列滿足,點在直線上,.

(Ⅰ)求數(shù)列的通項公式;

  (Ⅱ)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)統(tǒng)考)(13分)

如圖,在正四棱柱ABCD―A1B1C1D1中,已知AA1=4,AB=2,點E在棱CC1上,且CE=1.

   (Ⅰ)求證:BE∥平面AA1D1D;

   (Ⅱ)求二面角B―ED―C的大;

   (Ⅲ)求證:A1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)統(tǒng)考)(13分)

中,角所對的邊長分別,且滿足.

(Ⅰ)求角B的值;

(Ⅱ)若,求的值.

查看答案和解析>>

同步練習冊答案