9.拋物線y2=2x上一點(diǎn)M到它的焦點(diǎn)F的距離為$\frac{5}{2}$,O為坐標(biāo)原點(diǎn),則△MFO的面積為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 利用拋物線的定義,根據(jù)拋物線y2=2x上一點(diǎn)M到它的焦點(diǎn)F的距離為$\frac{5}{2}$,可得M的坐標(biāo),即可求得△OFM的面積.

解答 解:∵拋物線y2=2x上一點(diǎn)M到它的焦點(diǎn)F的距離為$\frac{5}{2}$,
∴x+$\frac{1}{2}$=$\frac{5}{2}$,∴x=2,
∴x,2時(shí),y=±2
∴△OFM的面積為$\frac{1}{2}×\frac{1}{2}×2$=$\frac{1}{2}$.
故選C.

點(diǎn)評(píng) 本題考查拋物線的定義,考查三角形面積的計(jì)算,確定M的坐標(biāo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2${cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$;
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)$({A,\frac{1}{2}})$,若${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=4,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=2x+2+1的圖象過(guò)定點(diǎn)( 。
A.(1,2)B.(2,1)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=${({\frac{1}{2}})^x}$,且a>b>c>0,則$\frac{f(a)}{a}$,$\frac{f(b)}$,$\frac{f(c)}{c}$的大小關(guān)系為$\frac{f(a)}{a}<\frac{f(b)}<\frac{f(c)}{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=2m2x2+4mx-3lnx,其中m∈R
(1)若x=1是f(x)的極值點(diǎn),求m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.過(guò)點(diǎn)(3,1)作圓(x-2)2+(y-2)2=5的弦,其中最短弦的長(zhǎng)為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=lnx+2x+x-1,若f(x2-4)<2,則實(shí)數(shù)x的取值范圍是( 。
A.(-2,2)B.(2,$\sqrt{5}$)C.(-$\sqrt{5}$,-2)D.(-$\sqrt{5}$,-2)∪(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在區(qū)域$\left\{\begin{array}{l}{x+y-\sqrt{2}≤0}\\{x-y+\sqrt{2}≥0}\\{y≥0}\end{array}\right.$內(nèi)任取一點(diǎn)P,求點(diǎn)P落在單位圓x2+y2=1內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)全集U=R,A={x|1≤x≤3},B={x|2a<x<a+3}
(Ⅰ)當(dāng)a=1時(shí),求(CUA)∩B;
(Ⅱ)若(CUA)∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案