⊙A的方程,⊙B的方程為,判斷⊙A和⊙B是否相交,若相交,求過(guò)兩點(diǎn)的直線的方程;若不相交,說(shuō)明理由。

答案:兩圓相交;4x+4y+5=0
解析:

思維分析:判定兩圓的是否相交,只需判定兩圓的半徑和、差與圓心距間的關(guān)系即可。

解:⊙A的方程可寫(xiě)為。

B的方程可寫(xiě)為

∴兩圓心之間的距離滿足

即兩圓心之間的距離小于兩圓半徑之內(nèi)和大于兩圓半徑之差.

∴兩圓相交.

A的方程與⊙B的方程左、右兩邊分別相減得-4x4y5=0,即,4x4y5=0

即為過(guò)兩圓交點(diǎn)的直線的方程.

點(diǎn)撥:判斷兩圓相交的方法,常用兩圓心之間的距離d與兩圓半徑的和及差的絕對(duì)值比較大。串(dāng)|Rr|dRr時(shí),兩圓相交.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π

②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且
OA
OB
OC
,則α+β=1是A、B、C三點(diǎn)共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱(chēng)數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)樣本a,3,5,7的平均數(shù)是b,且a、b是方程x2-5x+4=0的兩根,則這個(gè)樣本的方差是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•洛陽(yáng)二模)給出下列命題:
①設(shè)向量
e1
,
e2
滿足|
e1
|=2,|
e2
|=1,
e1
,
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實(shí)數(shù)t的取值范圍是(-7,-
1
2
);
②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
③設(shè)a,b,c分別為△ABC的角A,B,C的對(duì)邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號(hào)是
 (寫(xiě)出所有假命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南寧模擬)過(guò)點(diǎn)M(4,2)作X軸的平行線被拋物線C:x2=2py(p>0)截得的弦長(zhǎng)為4
2
(I )求拋物線C的方程;(II)過(guò)拋物線C上兩點(diǎn)A,B分別作拋物線C的切線l1,l2(i)若l1,l2交點(diǎn)M,求直線AB的方(ii)若直線AB經(jīng)過(guò)點(diǎn)M,記l1,l2的交點(diǎn)為N,當(dāng)S△ABN=28
7
時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案