11.已知集合M={x|-3<x<1},N={x|x≤-3},則M∪N=( 。
A.B.{x|x<1}C.{x|x≥1}D.{x|x≥-3}

分析 利用并集定義直接求解.

解答 解:∵集合M={x|-3<x<1},N={x|x≤-3},
∴M∪N={x|x<1}.
故選:B.

點評 本題考查滿足條件的集合A的個數(shù)的求法,是基礎(chǔ)題,注意并集性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=ln(x+1)-x2-x
(Ⅰ)若關(guān)于x的函數(shù)h(x)=f(x)+$\frac{5}{2}$x-t在[0,2]上恰有兩個不同零點,求實數(shù)t的取值范圍;
(Ⅱ)求證:對任意的n∈N*,不等式ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,其短軸的一個端點與兩個焦點構(gòu)成面積為$\sqrt{3}$的正三角形,過橢圓C的右焦點作斜率為k(k≠0)的直線l與橢圓C相交于A、B兩點,線段AB的中點為P.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)過點P垂直于AB的直線與x軸交于點D,試求$\frac{{|{DP}|}}{{|{AB}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=-$\sqrt{3}$sin2x+sinxcosx.
(1)求f($\frac{25π}{6}$)的值
(2)求函數(shù)f(x)的最小正周期及在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,-1).
(1)若θ為$\overrightarrow{a}$與$\overrightarrow$的夾角,求cosθ的值;
(2)若2$\overrightarrow{a}$+$\overrightarrow$與k$\overrightarrow{a}$-$\overrightarrow$垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=x2+(a-1)x+2在(-∞,4]上是單調(diào)遞減的,則實數(shù)a的取值范圍為{a|a≤-7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{alnx-b{e}^{x}}{x}$ (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
(I)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
(II)(i)當(dāng) a=b=l 時,證明:xf(x)+2<0;
(ii)當(dāng) a=1,b=-1 時,若不等式:xf(x)>e+m(x-1)在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}是公差為正數(shù)的等差數(shù)列,a2和 a5是方程x2-12x+27=0 的兩實數(shù)根,數(shù)列{bn}滿足3n-1bn=nan+1-(n-1)an
(Ⅰ)求an與bn;
(Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項和,求Tn,并求Tn<7 時n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中的假命題是( 。
A.?x0∈(0,+∞),x0<sinx0B.?x∈(-∞,0),ex>x+1
C.?x>0,5x>3xD.?x0∈R,lnx0<0

查看答案和解析>>

同步練習(xí)冊答案