[2014·泉州模擬]已知橢圓的焦點(diǎn)是F1、F2,P是橢圓的一個(gè)動(dòng)點(diǎn),如果M是線段F1P的中點(diǎn),那么動(dòng)點(diǎn)M的軌跡是(  )
A.圓B.橢圓C.雙曲線的一支D.拋物線
B
由題知|PF1|+|PF2|=2a,設(shè)橢圓方程:=1(其中a>b>0).連接MO,由三角形的中位線可得:|F1M|+|MO|=a(a>|F1O|),則M的軌跡為以F1、O為焦點(diǎn)的橢圓.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點(diǎn)為,其中的離心率為.

(1)求的值;
(2)過點(diǎn)的直線分別交于(均異于點(diǎn)),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知橢圓E經(jīng)過點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過點(diǎn)A(2,3).

(1)求橢圓E的方程;
(2)在橢圓E上是否存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)?若存在,請(qǐng)找出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為,離心率,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線上的不同兩點(diǎn),若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一輛卡車高3m,寬1.6m,欲通過橫斷面為拋物線形的隧道,已知拱口AB的寬恰好為拱高CD的4倍,|AB|=am,,求能使卡車通過的a的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)是橢圓上任意一點(diǎn),圓是以為直徑的圓.
(1)若圓過原點(diǎn),求圓的方程; 
(2)寫出一個(gè)定圓的方程,使得無論點(diǎn)在橢圓的什么位置,該定圓總與圓相切,請(qǐng)寫出你的探究過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于直線于點(diǎn)P,線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若上不同的點(diǎn),且,則的取值范圍是(  )
A.B.
C.D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與軸的交點(diǎn)是
(1)點(diǎn)在已知橢圓上,動(dòng)點(diǎn)滿足,求動(dòng)點(diǎn)的軌跡方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn),求的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一個(gè)底面半徑為的圓柱被與其底面所成角為的平面所截,截面是一個(gè)橢圓,當(dāng)時(shí),這個(gè)橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案