【題目】某漁業(yè)公司年初用81萬(wàn)元購(gòu)買(mǎi)一艘捕魚(yú)船,第一年各種費(fèi)用為1萬(wàn)元,以后每年都增加2萬(wàn)元,每年捕魚(yú)收益30萬(wàn)元.

問(wèn)第幾年開(kāi)始獲利?

若干年后,有兩種處理方案:方案一:年平均獲利最大時(shí),以46萬(wàn)元出售該漁船;

方案二:總純收入獲利最大時(shí),以10萬(wàn)元出售該漁船問(wèn):哪一種方案合算?請(qǐng)說(shuō)明理由.

【答案】(1)第4年開(kāi)始獲利;(2)見(jiàn)解析.

【解析】

設(shè)第n年開(kāi)始獲利,獲利為y萬(wàn)元,利用數(shù)列列出n年的總費(fèi)用為獲利為利用二次函數(shù)的性質(zhì)求解即可.

求出方案一的總收益,方案二的總收益,即可得到結(jié)果.

設(shè)第n年開(kāi)始獲利,獲利為y萬(wàn)元,

由題意知,n年共收益30n萬(wàn)元,每年的費(fèi)用是以1為首項(xiàng),2為公差的等差數(shù)列,

n年的總費(fèi)用為

獲利為

解得

,時(shí),即第4年開(kāi)始獲利.

方案一:n年內(nèi)年平均獲利為

由于,當(dāng)且僅當(dāng)時(shí)取“”號(hào).

萬(wàn)元

即前9年年平均收益最大,此時(shí)總收益為萬(wàn)元

方案二:總純收入獲利

當(dāng)時(shí),取最大值144,此時(shí)總收益為

兩種方案獲利相等,但方案一中,所需的時(shí)間短,

方案一較合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,若存在實(shí)數(shù),使得對(duì)于任意的,都有,則稱(chēng)數(shù)列為“數(shù)列”( )

A. 是等差數(shù)列,且首項(xiàng),則數(shù)列是“數(shù)列”

B. 是等差數(shù)列,且公差,則數(shù)列是“數(shù)列”

C. 是等比數(shù)列,也是“數(shù)列”,則數(shù)列的公比滿足

D. 是等比數(shù)列,且公比滿足,則數(shù)列是“數(shù)列”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R.若直線l:ax+y﹣7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y﹣91=0.求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)

(1)若,求不等式的解集;

(2)若對(duì)任意,均存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn

查看答案和解析>>

同步練習(xí)冊(cè)答案